
- •Предмет и функции философии науки.
- •2. Наука и ее место в культуре. Функции науки в жизни общества: наука как мировоззрение, производительная и социальная сила.
- •3. Роль науки в современном образовании и формировании личности.
- •4. Генезис философии и формирование научного мышления
- •5. Позитивистская и постпозитивистская парадигмы (традиции) в философии науки
- •6. Позитивистская традиция в философии науки. Верифицируемость как критерий научного знания
- •7. Концепция роста научного знания к. Поппера. Фальсифицируемость как критерий демаркации науки
- •8. Модель развития науки т. Куна
- •9. Методология научно-исследовательских программ и. Лакатоса
- •10. Концепция методологического анархизма п. Фейeрабенда
- •11. Социологическая и культурологическая парадигмы (традиции) в философии науки
- •12. Функции (ценность) науки в составе традиционалистского и техногенного типов цивилизации
- •13. Понятие научной рациональности и ее ценность
- •14. Природа научного знания и его основные характеристики. Классический и современный идеалы научности
- •15. Структурное многообразие науки: уровни, формы, дисциплины
- •16. Научное и вненаучное знание
- •17. Наука и философия: специфика и единство
- •18. Наука и ценностные виды познания (искусство, религия). Наука и обыденное познание
- •19. Возникновение науки и основные стадии ее исторической эволюции
- •20. Преднаука и наука: обобщение практического опыта и конструирование теоретических моделей как две стратегии порождении знаний. Преднаука Древнего Востока
- •21. Рождение греческой науки: от мифа к логосу. Становление первых научных программ
- •22. Математическая программа Пифагора и Платона
- •23. Атомистическая программа Левкиппа и Демокрита
- •24. Научная программа Аристотеля
- •25. Научные знания в Средние века. Манипуляция с природными объектами – алхимия, астрология, магия. Формирование идеалов математизированного и опытного знания (оксфодская школа, р. Бэкон, у.Оккам)
- •26. Научная революция XVI-XVII веков: основное содержание. Предпосылки возникновения экспериментального метода и его соединения с математическим описанием природы (г. Галилей, ф. Бэкон, р. Декарт)
- •28. Основные научные программы в новоевропейской науке XVII – XVIII вв. (Программы атомистов, г.В. Лейбница)
- •29. Формирование науки как профессиональной деятельности. Возникновение дисциплинарно организованной науки. Технологическое применение науки. Формирование технических наук
- •30. Становление социальных и гуманитарных наук: содержание, социокультурные и мировоззренческие основания
- •31.Многообразие типов научного знания. Критерии научности.
- •32. Особенности и структура эмпирического знания. Методы и формы познания эмпирического уровня
- •33. Особенности и структура теоретического знания. Методы и формы познания теоретического уровня
- •34. Научный факт, проблема и гипотеза как формы развития научного познания
- •1) Попытка объяснить изучаемое явление на основе базиса гипотезы.
- •35. Основные познавательные функции науки: научное описание, объяснение, понимание, научное предсказание
- •36. Основания науки: сущность, виды, значение в системе науки
- •37. Идеалы и нормы научного исследования: сущность, виды, функции в системе науки
- •38. Научная картина мира: сущность, исторические формы, функции
- •39. Философские основания науки
- •40. Модели развития науки (экстернализм, интернализм, кумулятивизм, революционизм)
- •41. Научные традиции и научные революции. Глобальные научные революции и смена типов научной рациональности
- •42. Специфика современной, постнеклассической науки
- •5. Изменение характера объекта исследования и усиление роли междисциплинарных комплексных подходов в его изучении.
- •6. Соединение объективного мира и мира человека, преодоление разрыва объекта и субъекта.
- •7. Еще более широкое применение философии и ее методов во всех науках.
- •8. Усиливающаяся математизация научных теорий и увеличивающийся уровень их абстрактности и сложности.
- •43. Современные процессы дифференциации и интеграции наук
- •44. Общие закономерности развития науки
- •1. Преемственность в развитии научных знаний.
- •2. Единство количественных и качественных изменений в развитии науки.
- •3. Дифференциация и интеграция наук.
- •4. Взаимодействие наук и их методов.
- •5. Углубление и расширение процессов математизации и компьютеризации.
- •7. Ускоренное развитие науки.
- •8. Свобода критики, недопустимость монополизма и догматизма.
- •45. Этические проблемы науки, их специфика на рубеже XX-XXI вв.
- •46. Экологические проблемы техногенной цивилизации и возможности современной науки в их решении
- •3.Загрязнение окружающей среды.
- •5. Снижение уровня здоровья населения.
- •6. Проблема озонового слоя и изменения климата планеты.
- •48. Парадигма глобального эволюционизма в современной науке
- •49. Наука как социальный институт
- •50. Наука и экономика. Наука и власть. Проблемы государственного регулирования науки
24. Научная программа Аристотеля
Континуалистская научная программа
Аристотеля не устраивают крайности двух предыдущих научных программ. Аристотель считает, что идеи и чувственные вещи не могут существовать отдельно. Мир един, а не распадается на две части – чувственную и идеальную. Поэтому познания заслуживают не только идеи, но и мир чувственных вещей.
Чтобы обосновать это утверждение, Аристотель в качестве первоосновы мира предлагает четыре причины бытия:
-формальную,
- материальную,
-действующую
-и целевую.
Материя – это пассивное начало, материал. Чтобы стать вещью, она должна соединиться с формой, идеальным началом. В каждой вещи обнаруживается соединение материи и формы, при этом материя данной вещи является формой для материи тех элементов, из которых эта вещь состоит. Двигаясь так вглубь материи, вещества, можно прийти к первоматерии, лишенной всяких свойств и качеств. Если первоматерия соединится с простейшими формами (теплое, холодное, сухое и влажное), образуются первоэлементы – земля, вода, воздух и огонь.
Была сформулирована знаменитая геоцентрическая модель Вселенной (в центре Вселенной находится Земля, вокруг которой по соответствующим орбитам вращаются остальные планеты. Земля неподвижна и шарообразна. Вокруг нее располагаются более «легкие» элементы – вода, воздух и огонь. Выше идет надлунный божественный мир, существующий по иным законам, чем земной мир, так как там все тела состоят из пятого элемента – эфира. Луна и Солнце, вращающиеся вместе с этими сферами вокруг Земли. Картину античного Космоса замыкала сфера неподвижных звезд, за которой находился – Бог. В Космосе Аристотеля не было пустоты (с тех пор известна фраза: «Природа не терпит пустоты»). Поэтому его программа может быть названа континуальной, она принципиально противоположна Космосу Демокрита, который состоит из атомов и пустоты).
Важно:
- Континуализм, как и атомизм, представляет собой физическую программу.
- Аристотель был первым античным ученым, создавшим систематическую науку о природе - физику. На этой основе он критикует платоновскую математическую научную программу, считая, что при исследовании природы необходимо исходить из физики. Он первым пытался определить центральное понятие физики -движение. При этом Аристотель исходил из существования в мире вечного и непрерывного движения. В отличие от физики атомистов, которая в своей основе была количественной, Аристотель утверждал реальность качественных различий.
- Аристотель внес в античную науку понимание роли и значимости эмпирического знания как исходной предпосылкой научного исследования.
- Многие современные исследователи считают, что он сформулировал три знаменитых закона формальной логики — закон тождества, закон исключенного противоречия и закон исключенного третьего.
У Аристотеля можно найти представление о том, как нужно правильно строить научное исследование и излагать его результаты. Работа ученого должна, на его взгляд, содержать четыре основных этапа:
- изложение истории изучаемого вопроса, сопровождаемое критикой предложенных предшественниками точек зрения и решений;
- четкая постановка проблемы, которую нужно решить;
- выдвижение гипотезы;
- обоснование этого решения с помощью логических аргументов и обращения к данным наблюдений.
Ограниченность программы Аристотеля:
- Его слабая часть- физика (соединяет надлунную и подлунную сферу;
- разделение миров (в каждом действуют свои закономерности);
- область природы исследуемая Аристотелем была практически не познана
- она описывала мир как замкнутый и относительно небольшой по размерам Космос, в центре которого находилась Земля.
- Математика считалась наукой об идеальных формах, применительно к природе сфера ее применений ограничивалась расчетами движения небесных тел в «надлунном мире». В «подлунном мире», в познании земных явлений, по Аристотелю, возможны только нематематические, качественные теории.
Очень важно также отметить то, что античным ученым была чужда идея точного контролируемого эксперимента: их учения опирались на опыт, на эмпирию, но это было обычное наблюдение вещей и событий в их естественной среде с помощью обычных человеческих органов чувств.