
- •1Реакторные измерения Основные измеряемые параметры реактора
- •Датчики системы измерения
- •Принцип работы ионизационных камер, камер деления
- •Импульсные камеры, счетчики частиц
- •Чувствительность нейтронных детекторов
- •Размещение нейтронных детекторов
- •Импульсная камера деления кнт-31
- •Ионизационная камера кнк-56
- •Ионизационная камера кнк-53м
- •Внутризонная триаксиальная токовая камера деления ктв-17
- •Диапазоны работы измерительных каналов
- •2Исполнительные (регулирующие) органы суз Общие положения
- •Исполнительные органы суз рбмк-1000
- •Стержни-поглотители
- •Стержни-поглотители рр, ар, лар, лаз (сб. 2091)
- •Стержни-поглотители усп (сб. 2093), баз (сб.2505)
- •Стержни-поглотители сб. 2477
- •Кластерный регулирующий орган сб. 2399
- •Исполнительные механизмы суз Назначение, состав, характеристики исполнительных механизмов
- •Конструкция сервопривода Сб. 151
- •Конструкция сервоприводов усп Сб. 152
- •Конструкция сервопривода баз сб. 195
- •Указатели положения стержней суз
- •Амортизатор
- •3Принципы построения систем управления Общие положения
- •Назначение, возможности, структурная схема суз рбмк‑1000 Назначение, возможности суз
- •Структурная схема суз
- •Измерительная часть суз.
- •Принципы построения суз рбмк-1000 Обеспечение надежности и безопасности
- •Обеспечение выполнения функций суз
- •Обеспечение критериев надежности при отказах
- •4Схемы управления стержнями суз
- •Релейно-контакторные схемы управления стержнями рр, усп, баз (блок №1) Общие положения
- •Бврк рр Работа бврк при поступлении команды "Вверх"
- •Работа бврк при поступлении команды "Вниз"
- •Бврк усп
- •Бврк баз
- •Исполнение бврк режима аз-5 Формирование дополнительного сигнала аз-5
- •Исполнение бврк рр режима аз-5
- •Исполнение бврк усп режима аз-5
- •Исполнение бврк баз режима аз-5
- •Исполнение бврк баз режима баз
- •Система бесконтактного управления сервоприводами стержней ба-101 Общие положения
- •Блок управления сервоприводом (бусп)
- •Работа бусп в режиме "Из зоны"
- •Работа бусп рр, ар, лар, усп в режиме "в зону"
- •Работа бусп рр, ар, лар в режиме "аз-5"
- •Особенности схем бусп усп, баз
- •Схемы "силовой блокировки", "шагового" перемещения, защиты от "самохода" (блок №2)
- •Блок измерительный (би)
- •5Электроснабжение суз
- •Общие положения
- •Электропитание измерительной части, логики
- •Электроснабжение щэп, щэп-л
- •Электроснабжение логики суз
- •Электроснабжение муфт сервоприводов Электроснабжение муфт сервоприводов рр, усп, ар, лар
- •Электроснабжение муфт сервоприводов баз
- •Электроснабжение силовых цепей, цепей управления сервоприводов Электроснабжение сервоприводов рр и усп
- •Электроснабжение сервоприводов лар и ар
- •Электроснабжение сервоприводов баз
- •Электроснабжение сельсинов указателей положения стержней
- •Электропитание шкафа силовой блокировки (шпс)
- •Электропитание измерительной части, логики, щпмс
- •Электроснабжение силовых цепей, цепей управления сервоприводов.
- •Электропитание сервоприводов баз
- •Электроснабжение сельсинов указателей положения стержней
- •Электропитание шкафа силовой блокировки (шпс)
- •6Измерительная часть суз Общие положения
- •Измерительные схемы пускового диапазона
- •Состав, назначение
- •Подвеска кнт-31
- •Блок питания бп.30м
- •Прибор исс.3м
- •Схемы измерения нейтронной мощности и реактивности Состав, назначение
- •Подвеска камеры кнк-53м (рбм-к7, рбм-к15 сб. 38)
- •Цифровой вычислитель реактивности цвр-9
- •Аварийная защита реактора по уменьшению периода увеличения мощности (азс) Состав, назначение
- •Подвески ионизационных камер кнк-56 (сб. 39)
- •Усилитель защиты по скорости узс.13
- •Блок питания бп.38
- •Измерительные схемы рабочего диапазона Аварийная защита реактора по уменьшению периода увеличения мощности в рабочем диапазоне (азср)
- •Автоматические регуляторы мощности Общие положения
- •Измерительная часть 1,2 ар-азм Состав, назначение
- •Принцип работы измерительных каналов ар
- •Размещение ионизационных камер кнк-53м измерительных каналов 1,2ар-азм
- •Блок питания бп.39
- •Корректор тока КрТ.5
- •Задатчик мощности ЗдМ.5
- •Корректор уставки КрУ.4
- •Блок синхронного перемещения бсп.36
- •Блок триггеров бт.37
- •Усилитель защиты по мощности узм.11
- •Усилитель сигнала отклонения усо.10
- •Усилитель суммирующий усм.12, суммарный триггер ар (Тг ар)
- •Измерительная часть арм - азмм Состав, назначение
- •Измерительная часть лар-лаз Общие положения
- •Состав, назначение
- •Блок питания бп.119
- •Блок резисторов входных сигналов
- •Корректор тока камер
- •Усилитель защиты по мощности
- •Задатчики мощности лар-лаз
- •Блок синхронного перемещения (бсп)
- •Корректор КрУ.7
- •Усилитель сигнала отклонения (усо)
- •Триггеры лар (зонные и суммирующие).
- •Пульт контроля
- •7Логические схемы управления, защиты и контроля работоспособности Назначение, принципы построения и элементная база
- •Логика управления стержнями суз Общие положения
- •Формирование сигналов неисправности контроля набора стержней
- •Формирование команд ручного управления
- •Формирование команд управления стержнями 1,2ар, лар
- •Формирование команд управления при режимах "аз-5", "пк"
- •Формирование сигнала "Все стержни суз на нк (усп на вк)"
- •Схемы управления автоматическими регуляторами Схемы управления 1,2ар, арм
- •Формирование сигнала "Неисправность измерительной части ар"
- •Формирование сигнала "Неисправность исполнительной части 1(2,3)ар"
- •Формирование сигнала готовности ар
- •Формирование сигнала "1(2)ар включен"
- •Формирование сигналов "Включение слежения", "пк-вниз"
- •Формирование сигналов управления стержнями 1(2)ар
- •Схемы управления локальными автоматическими регуляторами
- •Формирование сигналов готовности зоны лар
- •Формирование сигналов управления стержнями лар
- •Формирование сигнала готовности лар
- •Формирование сигнала включения лар
- •Формирование сигналов управления задатчиками мощности с рабочей скоростью
- •Логические схемы формирования сигналов "аз-1,2,усм", "Режим пк" и сигнала управления задатчиками мощности 1,2ар и лар с аварийной скоростью
- •Особенности построения логических схем лаз
- •Формирование сигналов зоны лаз
- •Формирование предупредительных сигналов лаз
- •Формирование сигнала лаз
- •Формирование команд управления стержнями лаз
- •Схемы формирования сигнала аз-5
- •Формирование сигналов аз-5, аз-т1, аз-т2
- •8Система быстрой аварийной защиты Состав, назначение
- •Логическая обработка сигналов баз
- •Устройство и работа тэз баз.
- •9Схемы контроля логики и комплектности стоек щлс Назначение схем контроля
- •10Основные технические характеристики суз Документы, определяющие основные технические характеристики
- •Основные технические характеристики суз
- •Контроль и регистрация нейтронного потока
- •Контроль и поддержание заданного уровня мощности реактора
- •Контроль скорости увеличения мощности реактора
- •Обеспечение перекрытия диапазонов измерения измерительными каналами суз
- •Обеспечение надежности автоматического регулирования
- •Ручное управление, ограничения и блокировки
- •Возможности воздействия на реактивность реактора
- •Технические характеристики исполнительных механизмов Скорость перемещения стержней суз
- •Величина хода стержней суз и положения концевых выключателей сервоприводов
- •Режим баз
- •Режим аз-5
- •Динамические характеристики каналов формирования аварийных защит
- •Допустимые эксплуатационные пределы
- •Приложение 1
- •Приложение 2
- •Приложение 3
Импульсные камеры, счетчики частиц
Импульсные ионизационные камеры представляют собой детекторы, работающие на том же принципе, что и рассмотренные выше токовые ионизационные камеры. Токовый режим работы ионизационной камеры применяется при больших потоках нейтронов. В остановленном реакторе и в начальный период его пуска поток нейтронов мал и удается зафиксировать лишь отдельные импульсы тока, обусловленные пролетом в газе камеры -частиц или осколков деления из радиатора. Для обеспечения импульсного режима работы ионизационной камеры схема ее включения должна быть изменена, например так, как это условно показано на Рис. 1 -5.
Рассмотрим работу ионизационной камеры, работающей в импульсном режиме, используя Рис. 1 -5. В цепь камеры включено сопротивление R1, на котором появляется импульс напряжения ΔU(t) = I(t)R1, где I(t) – импульс тока. Импульс напряжения ΔU(t) проходит через конденсатор С и усиливается пропорциональным импульсным усилителем переменного тока с входным сопротивлением R2. Далее импульс, пройдя через дискриминатор амплитуды, может быть зафиксирован электронным регистратором. Зная количество импульсов N(Δt), зафиксированных в течение некоторого интервала времени Δt, можно определить среднюю скорость регистрации nср = N(Δt)/Δt. Прибор, вычисляющий nср, называется измерителем скорости счета или интенсиметром.
Рис. 1‑5 Схема включения ионизационной камеры в импульсном режиме
Достоинством импульсных детекторов нейтронов является возможность выделить с их помощью нейтроны на большом фоне γ-излучения, что особенно важно при повторных пусках реактора, работавшего длительное время на больших уровнях мощности. Выделение нейтронов на фоне γ излучения основано на том, что значение импульсов, обусловленных нейтронами, больше импульсов, образованных γ- квантами. Разделение импульсов осуществляется с помощью дискриминатора.
Необходимо отметить, что слой делящегося вещества в камере деления в результате естественной α-радиоактивности излучает α-частицы с энергией около 4,5 Мэв. Этот фактор ограничивает количество делящегося вещества в камере, т.к. наложение импульсов от α-частиц может дать импульс, равный или даже больший, чем импульс от осколка деления. В связи с этим количество делящегося материала в камере деления, например, изотопа U235, обычно не превышает 1 г.
Как отмечалось выше, импульсные ионизационные камеры целесообразно использовать при малом нейтронном потоке на фоне большего γ-излучения. При больших уровнях потока нейтронов импульсы следуют с такой большой частотой, что скорость их появления нельзя зарегистрировать с помощью самой современной быстродействующей импульсной техники. В связи с этим на уровне мощности больше 10-7 от номинального уровня переходят на контроль с помощью токовых ионизационных камер, а импульсные детекторы извлекают из области больших потоков нейтронов для предотвращения выгорания нейтронно-чувствительного слоя.
Чувствительность нейтронных детекторов
Чувствительность нейтронных ионизационных камер есть коэффициент пропорциональности между сигналом и плотностью потока нейтронов φ. Для импльсных камер сигналом является скорость счета
N= ηимпφ,
где ηимп – чувствительность камеры в импульсном режиме, имп*см2/нейтр.
Для токовых камер сигнал определяется силой тока
I= ηтокφ,
где ηток – чувствительность камеры в токовом режиме, А*см2*с/нейтр.