Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ИЭ / 1 семестр / Учебники / Линейная алгебра и аналитическая геометрия

.pdf
Скачиваний:
25
Добавлен:
27.08.2020
Размер:
3.47 Mб
Скачать

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Расстояние от точки

до оси

 

равно

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Получили точек:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;

 

 

 

 

 

;

 

;

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;

 

 

 

 

 

;

 

 

;

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. ГЕОМЕТРИЧЕСКИЕ ЗАДАЧИ

2.4.1. Вычисление модуля, направляющих косинусов и проекций векторов

Из свойства скалярного произведения:

следует:

 

 

 

 

 

 

 

 

 

 

.

 

 

 

Если известны координаты вектора в ОНБ {

}:

, то

 

 

 

 

 

 

и

.

 

 

Рис. 2.45. Направляющие углы вектора

113

,
.

 

Опр. Направляющие углы вектора это углы, которые образует

данный вектор с осями координат: α

 

 

 

, β

,

γ

(см. рис. 2.45). Косинусы этих углов называются на-

правляющими косинусами данного вектора: cos α, cos

, cos .

 

 

Направляющие косинусы вектора являются координатами орта

данного вектора:

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

cos α,

cos ,

 

cos .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

Следствие. Сумма квадратов направляющих косинусов равна

:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 1.

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Из геометрического смысла скалярного произведения имеем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пусть известны координаты векторов

 

и в ОНБ {

}:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. Тогда:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример 2.

,

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

114

2.4.2. Деление отрезка в данном отношении

Теорема. Пусть точка M лежит на отрезке AB и делит его в от-

ношении

 

α: β (рис. 2.46); пусть известны прямоугольные декар-

 

товы координаты точек: A(

), B(

). Тогда координа-

ты точки M(

 

) вычисляются по формулам:

 

 

 

 

 

 

,

 

,

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

* B

 

 

 

 

 

 

 

M

 

 

 

 

 

 

α

*

 

 

 

 

A *

O

Рис. 2.46. Деление отрезка в данном отношении

Доказательство.

,

,

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1;

 

2++

 

 

 

 

1. Теорема доказана.

 

 

 

 

 

 

 

 

 

 

Пример 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

В

частности,

если точка

M является

серединой отрезка AB

(

 

), то

 

 

 

,

 

 

 

 

 

 

,

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если ввести обозначение:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

то формулы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

для координат точки M запишутся в виде:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

,

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

115

Координаты центра тяжести треугольника

Центр тяжести треугольника это точка пересечения медиан треугольника. AK, BL, CN медианы ABC, O — центр тяжести

ABC (рис. 2.47).

 

 

B

 

 

N

K

 

 

 

 

O

 

 

 

 

 

 

 

 

A

 

L

C

 

 

 

 

 

Рис. 2.47. Центр тяжести

 

 

 

 

треугольника

 

 

Упр. 6. Известны прямоугольные декартовы координаты вершин

треугольника ABC: A(

), B(

), C(

). Дока-

зать, что координаты центра тяжести O

 

вычисляются по

формулам:

 

 

 

,

 

 

 

 

,

 

 

.

 

 

 

 

 

 

 

 

 

Пример 2. Для треугольника

ABC: A

 

 

 

 

 

 

координаты центра тяжести O

:

 

 

 

 

 

 

 

 

 

 

 

 

 

O

.

 

 

 

 

 

 

 

 

 

 

 

 

2.4.3.Вычисление расстояния между двумя точками

иугла между двумя векторами

 

Расстояние между двумя точками: d (A; B)

(рис. 2.48).

 

Пусть известны прямоугольные декартовы координаты точек:

A(

), B(

). Тогда:

,

 

 

 

 

 

d (A; B)

.

 

116

d *B

A *

O

Рис. 2.48. Расстояние между точками

Пример 1. Найти стороны

треугольника ABC, где

 

 

 

 

(рис. 2.49).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

 

,

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

Рис. 2.49. К решению примера 1

 

 

 

 

 

 

 

,

 

 

,

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

,

 

.

Из

определения

 

 

скалярного

 

 

 

произведения

векторов —

 

 

cos (см. рис. 2.50) — получаем формулу для вычисле-

ния косинуса угла между двумя векторами: cos

 

 

 

 

.

 

 

 

 

 

 

 

Если

известны

координаты

векторов

 

 

 

 

 

 

 

и

 

 

относительно ОНБ {

 

}, то:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

117

Рис. 2.50. Угол между векторами

Пример 2. Найти углы A,

 

 

B,

C треугольника ABC, где

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(см. рис. 2.51).

 

 

 

 

 

 

 

 

 

 

 

,

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

,

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

 

,

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.51. К решению

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

примера 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

arccos

 

 

 

 

 

 

 

≈ 66 ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

arccos

 

 

 

 

 

 

 

 

≈ 75,8 ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

arccos

 

 

 

 

 

 

 

 

≈ 38,2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.4. Вычисление площадей и объемов

 

 

Площадь параллелограмма, построенного на векторах

и :

 

 

 

 

 

 

 

 

(рис. 2.52).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

118

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 2.52. Площадь параллелограмма

Площадь треугольника, построенного на векторах

и :

 

 

(рис. 2.53).

 

 

 

 

Рис. 2.53. Площадь треугольника

Если известны

координаты

векторов

 

и

 

 

 

относительно ОНБ {

}, то

 

 

 

 

 

 

 

 

 

 

,

 

 

 

 

 

, где A

, B

, С

.

 

 

 

 

 

Пример 1. Найти площадь треугольника ABC, где

 

 

 

 

,

,

.

 

 

 

 

 

.

.

119

Объем параллелепипеда, построенного на векторах , , :

(рис. 2.54).

Рис. 2.54. Объем параллелепипеда

Объем тетраэдра (пирамиды), построенного на векторах , ,

: тетр

 

(рис. 2.55).

 

Рис. 2.55. Объем тетраэдра

 

 

Если известны координаты векторов

,

,

относительно ОНБ {

}, то

 

 

,

 

.

 

Пример 2. Найти объем V тетраэдра ABCD, где

(см. рис. 2.56).

,

,

,

.

Рис. 2.56. К решению примера 2

120

3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

Аналитическая геометрия раздел математики, в котором геометрические фигуры изучаются с помощью метода координат и алгебраических уравнений. Возникновение метода координат связано с именами великих французских математиков 17 века Рене Декартом

(1596–1650) и Пьером Ферма (1601 1665).

3.1. ЛИНИИ НА ПЛОСКОСТИ

3.1.1. Преобразование прямоугольных координат на плоскости

Постановка задачи. Пусть имеются две прямоугольные декартовы системы координат на плоскости одной ориентации и

(см. рис. 3.1). Известно взаимное расположение этих систем друг относительно друга. Требуется для произвольной точки на плоскости

выразить координаты

в одной системе через координаты

 

в другой системе.

 

 

Систему координат

будем называть «старой» системой, а

«новой» системой координат.

Рис. 3.1. «Старые» и «новые» координаты точки на плоскости

121

Переход от одной системы к другой может быть осуществлен с помощью параллельного переноса старой системы в точку и затем поворота полученной системы на некоторый угол .

Рис. 3.2. Взаимное расположение двух систем координат

 

Взаимное расположение старой и новой систем координат мо-

жет быть задано координатами точки

 

в старой системе ко-

ординат и углом поворота

новой системы относительно старой сис-

темы координат (рис. 3.2).

 

 

 

 

 

Преобразование координат при параллельном переносе

 

Пусть система координат

получена параллельным перено-

сом системы координат

на вектор

 

(см. рис. 3.3); { }

ОНБ в старой системе, {

} ОНБ в новой системе; заметим,

что

,

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис. 3.3. Параллельный перенос системы координат

122