
- •2. Некоторые методы анализа систем 10
- •1.1.1.2. Определение управления
- •1.1.1.3. Общие принципы системной организации
- •1.1.2. Общие принципы управления
- •1.1.2.5. Стохастическое управление
- •1.1.2.6. Нечеткое управление
- •1.1.2.7. Дискретное и непрерывное управление
- •1.2. Объекты, системы и их модели (Лекция 2)
- •1.2.1. Математические модели систем и объектов управления.
- •1.2.1.1. Математическая модель
- •1.2.1.2. Способы классификации моделей (объектов)
- •1.2.1.3. Некоторые виды математических моделей
- •1.2.2. Сложные системы
- •1.2.2.1. Примеры и свойства сложных систем
- •Кортежное описание сложных систем
- •1.2.2.3. Структура систем и объектов управления
- •1.2.2.4. Иерархия в системах управления.
- •1.2.2.5. Иерархия целей в системах управления.
- •1.2.2.6. Компромиссы и комплексные критерии
- •2. Некоторые методы анализа систем
- •2.1. Построение и упрощение моделей объекта (Лекция 3)
- •2.1.1. Упрощение моделей объекта
- •2.1.1.1. Замена нестационарной модели набором стационарных
- •2.1.1.2. Линеаризация модели
- •2.1.2. Пример построения модели объекта
- •2.1.2.1. Характеристика объекта
- •2.1.2.2. Разработка математической модели
- •Линеаризация
- •2.1.2.4. Линейная модель объекта
- •2.2. Временные характеристики систем управления (Лекция 4)
- •2.2.1. Линейные нестационарные системы
- •2.2.1.1. Общий вид описания системы
- •2.2.1.2. Решение однородного уравнения
- •2.2.1.3. Решение неоднородного уравнения
- •2.2.1.4. Фундаментальная матрица системы и её свойства
- •2.2.1.5. Весовая и переходная матрицы системы
- •2.2.2. Линейные стационарные системы
- •2.2.2.1. Фундаментальная матрица стационарной линейной системы
- •2.2.2.2. Весовая и переходная матрицы стационарной системы
- •2.3. Передаточная функция (Лекция 5)
- •2.3.1. Некоторые операторы
- •2.3.1.1. Дифференциальный оператор
- •2.3.1.2. Оператор Лапласа
- •2.3.2. Передаточная функция и резольвента
- •2.3.2.1. Фундаментальная матрица (резольвента)
- •2.3.2.2. Матричная передаточная функция
- •2.3.2.3.Простейший пример определения резольвенты (Пример п2.2)
- •2.3.2.4. Метод Фаддеевой (Сурье )определения резольвенты
- •2.3.2.5. Пример применения метода Фаддеевой (Пример 2.3)
- •2.4. Частотные характеристики (функции) систем (Лекция 6)
- •2.4.1. Частотная переходная функция
- •2.4.1.1. Напоминание о представлении комплексных чисел
- •2.4.1.2. Частотная передаточная функция
- •2.4.1.3. Смысл компонент матричной частотной функции (Пример2.4)
- •2.4.1.4. Виды используемых частотных характеристик
- •2.4.1.5. Пример вычисления характеристик (Пример2.5)
- •2.4.2. Логарифмические частотные характеристики
- •2.4.2.1. Смысл логарифмических частотных характеристик
- •2.4.2.2. Определение логарифмических частотных характеристик
- •2.4.2.3. Асимптотические логарифмические частотные характеристики
- •2.4.2.4. Иллюстрация построения асимптотических характеристик (Пример 2.6)
- •2.5. Структурные схемы систем (Лекция 7)
- •2.5.1. Схемы соединения звеньев
- •2.5.1.1. Представление звеньев и связей в виде структурных схем
- •2.5.1.2. Последовательное соединение звеньев
- •2.5.1.3. Параллельное соединение
- •2.5.1.4. Соединение с обратной связью
- •2.5.1.5. Пример определения матрицы возвратной разности (Пример 2.7)
- •2.5.2. Структурные преобразования линейных систем
- •2.5.2.1. Назначение и содержание структурных преобразований
- •2.5.2.2. Правила структурных преобразований линейных систем
- •2.5.2.3. Дополнительные правила для стационарных линейных систем
- •2.5.2.4. Иллюстративный пример (Пример2.8)
- •2.6. Анализ устойчивости систем управления (Лекция 8)
- •2.6.1. Определение устойчивости систем
- •2.6.1.1. Номинальное состояние и понятие устойчивости
- •2.6.1.2. Определения устойчивости решений
- •2.6.1.3. Устойчивость линейных дифференциальных систем
- •2.6.1.4. Пример смесительного бака (Пример2. 9)
- •2.6.2. Устойчивость линейных стационарных систем
- •2.6.2.1. Представление реакции системы с различными собственными числами
- •2.6.2.2. Представление реакции системы с кратными собственными числами
- •2.7.1.2. Необходимые условия
- •2.7.1.3. Достаточные условия
- •2.7.1.4. Пример применения алгоритма Раусса (Пример 2.11)
- •2.7.2. Частотные критерии
- •2.7.2.1. Нестрогое обоснование частотных критериев
- •2.7.2.2. Критерий Михайлова
- •2.7.2.3. Критерий Найквиста
- •3. Методы анализа и синтеза управления.
- •3.1. Методы анализа управления (Лекция 10)
- •3.1.1. Управляемость, наблюдаемость.
- •3.1.1.1. Управляемость: определение (Пример 3.1)
- •3.1.1.2. Наблюдаемость: определение (Пример 3.2)
- •3.1.2. Корневой годограф
- •3.1.2.1. Определение корневого годографа
- •3.1.2.2. Свойства корневого годографа
- •3.1.2.3. Пример построения корневого годографа (Пример 3.3)
- •3.2. Управление и стабилизация (Лекция 11)
- •3.2.1. Цель управления, идеальное управление
- •3.2.1.1. Общая схема разомкнутого и замкнутого управления
- •3.2.1.2. Идеальное управление
- •3.2.1.3. Пример определения идеального управления (Пример 3.4)
- •3.2.1.4. Невозможность реализации идеального управления
- •3.2.1.5. Иллюстрация недостатков идеального управления (Пример 3.5)
- •3.3. Стабилизация с помощью обратной связи (Лекция 12)
- •3.3.1. Введение обратной связи
- •3.3.1.1. Определение обратной связи в скалярном случае
- •3.3.1.2. Иллюстрация определения стабилизирующей обратной связи (Пример 3.6)
- •3.3.2. Общий алгоритм стабилизации
- •3.3.2.1. Общий вид обратной связи
- •3.3.2.2. Замкнутое представление объекта и обратной связи
- •3.3.2.3. Алгоритм выбора стабилизирующей обратной связи в общем случае
- •3.3.3. Некоторые другие законы управления
- •3.3.3.1. Программное управление в комбинации с обратной связью по выходу
- •3.3.3.2. Управление по возмущению
- •3.3.3.3. Управление с обратной связью по ошибке
- •3.4. Удовлетворение некоторых требований к качеству управления (Лекция 13)
- •3.4.1. Некоторые характеристики качества управления
- •3.4.1.1. Переходный процесс детерминированной системы и его некоторые характеристики
- •3.4.1.2. Некоторые требования к переходному процессу и установившейся ошибке
- •3.4.2. Методика удовлетворения требований к качеству
- •3.4.2.1. Теорема о реакции на полиномиальное воздействие
- •3.4.2.2. Обеспечение требования ограниченности установившейся ошибки
- •3.4.2.3. Обеспечение ограниченности амплитуды ошибки при периодическом воздействии
- •3.4.2.4. Обеспечение ограниченности амплитуды ошибки при периодической помехе
- •4. Цифровые системы управления.
- •4.1. Модели, формула полной реакции, устойчивость. (Лекция 14)
- •4.1.1. Модели
- •4.1.1.1. Кусочно-постоянный процесс
- •4.1.1.2. Описание дискретных систем
- •4.1.1.3. Пример дискретной системы (Пример 4.1)
- •4.1.1.1. Дискретизация непрерывной модели
- •4.1.2. Решение разностных уравнений
- •4.1.2.1. Переходная матрица
- •4.1.2.2. Матричная импульсная переходная функция
- •4.1.2.3. Устойчивость
- •4.2. Синтез оптимального линейного дискретного регулятора (Лекция 15)
- •4.2.1. Методика синтеза оптимального управления
- •4.2.1.1. Многошаговое управление
- •4.2.1.2. Критерий оптимальности
- •4.2.1.3. Принцип оптимальности Беллмана
- •4.2.2. Синтез одношагового оптимального управления
- •4.2.2.1. Формирование критерия для одношаговой задачи
- •4.2.2.2. Определение вектора оптимального управления
- •4.2.2.3. Принцип перехода к многошаговой задаче
- •5. Стохастические системы
- •5.1. Стохастические процессы (Лекция 16)
- •5.1.1. Определение и естественные характеристики случайного процесса
- •5.1.1.1. Определение случайного процесса
- •5.1.1.2. Характеристики случайного процесса
- •5.1.2. Спектральное представление случайного процесса
- •5.1.2.1. Спектр функции
- •5.1.2.2. Спектральная плотность
- •5.1.2.3. Физический смысл гармонического анализа случайного процесса
- •5.1.2.4. Взаимосвязь функций времени и их спектрального представления
- •5.1.2.5. Матрица спектральных плотностей энергии
- •5.1.2.6. Пример определения функции спектральной плотности по ковариационной функции (Пример 5.1)
- •5.2. Задачи слежения (Лекция 17)
- •5.2.1. Характеристики качества следящих систем.
- •5.2.1.1. Описание разомкнутой следящей системы
- •5.2.1.2. Описание замкнутой следящей системы.
- •5.2.1.2. Интегральные характеристики качества регулирования
- •5.2.1.3. Среднее значение и дисперсия характеристик качества регулирования
- •5.2.1.4. Передаточные функции замкнутой системы
- •5.2.2. Примеры анализа стохастических систем
- •5.2.2.1. Реакция линейной системы стохастические внешние воздействия
- •5.2.2.2. Реакция линейных дифференциальных систем на белый шум
- •5.2.2.3. Пример дифференциальной системы, возбуждаемой белым шумом(Пример 5.2)
- •5.2.2.4. Моделирование стохастических процессов.
- •5.2.2.5. Моделирование стационарного процесса уравнением 1-го порядка (Пример 5.3)
- •5.2.3. Некоторые принципы проектирования следящих систем.
- •5.2.3.1. Устойчивость
- •5.2.3.2. Требования к следящей системе
- •5.2.3.3. Соглашение о входных воздействиях
- •5.2.4. Использование полос пропускания при проектировании
- •5.2.4.1. Скалярный случай
- •5.2.4.2. Принцип проектирования
- •5.2.4.3. Полоса частот системы
- •5.2.4.4. Полоса частот эталонного процесса
- •5.2.4.5. Реализация принципа проектирования( минимизация ошибки)
- •5.2.4.6. Реализация принципа проектирования ( минимизация входной переменной)
- •5.2.4.7. Оценка длительности переходных процессов
- •6. Адаптивные системы
- •6.1. Адаптивные системы и идентификация (Лекция 17)
- •6.1.1. Основные схемы адаптивных систем
- •6.1.1.1. Предназначение адаптации
- •6.1.1.2. Схема адаптации по разомкнутому контуру
- •6.1.1.3. Схема с самонастраивающимся регулятором
- •6.1.1.4. Схема с настройкой регулятора по эталонной модели
- •6.1.1.5. Общая схема адаптивной системы
- •6.1.2. Идентификация моделей
- •6.1.2.1. Идентификация структурная и параметрическая
- •6.1.2.2. Содержание метода наименьших квадратов
- •6.1.2.3. Рекуррентный алгоритм метода наименьших квадратов
6. Адаптивные системы
6.1. Адаптивные системы и идентификация (Лекция 17)
6.1.1. Основные схемы адаптивных систем
6.1.1.1. Предназначение адаптации
ЦВМ открыли большие возможности для использования информации, снимаемой с объекта, для улучшения качества управления или характеристик регулятора. Широкое распространение получили адаптивные, самонастраивающиеся системы, в которых реализуется автоматическая подстройка параметров системы на основе анализа и обработки информации об эффективности процесса регулирования.
Адаптация означает подстройку параметров регулятора, его самообучение. Параметры регулятора зависят от параметров объекта и обычно выражаются через них. Изначально параметры объекта не всегда известны с достаточной степенью точности или “плывут” во времени, что и вынуждает прибегать к адаптации. Поэтому адаптации – изменению характеристик регулятора – обычно предшествует процедура уточнения характеристик объекта по результатам измерения входных и выходных величин, которая называется идентификацией. Вопросы идентификации и адаптации получили резкое развитие в последние 25-30 лет, благодаря быстрому росту ресурсов цифровых контроллеров с одновременным снижением их стоимости.
Адаптация предназначена для повышения качества управления различными объектами и процессами за счет использования интеллектуальных методов обработки информации, снимаемой с объектов и процессов при их функционировании в штатных режимах. Возможности адаптивного управления постоянно расширяются благодаря быстрому росту емкости хранилищ информации, развитию методов и повышению скорости её обработки.
Главная отличительная особенность адаптивных систем от систем с постоянными параметрами состоит в том, что они могут автоматически приспосабливаться к изменяющимся внешним условиям, могут обучаться подстройкой регулятора.
6.1.1.2. Схема адаптации по разомкнутому контуру
Наиболее часто используются два основных способа подстройки регулятора.
Если изменяющиеся динамические свойства объекта доступны контролю по измеряемым внешним факторам и известно, как должен настраиваться регулятор в зависимости от параметров объекта, то можно использовать прямой метод настройки или адаптацию по разомкнутому контуру (рис. 6.1)
ε
Рис. 6.1. Адаптация по разомкнутому контуру: А - адаптер, Р – регулятор, О – объект.
6.1.1.3. Схема с самонастраивающимся регулятором
Если характеристики объекта измерить и оценить непосредственно нельзя, то используют адаптацию по замкнутому контуру (с обратной связью). В этом случае в систему вводится второй контур управления, который управляет не поведением объекта, а структурой и параметрами регулятора.
Адаптивные регуляторы с обратной связью можно разделить на два класса: самостабилизирующиеся регуляторы и регуляторы с эталонной моделью.
В самонастраивающейся системе (см. рис. 6.2) имеются идентификатор и корректор регулятора. Идентификатор постоянно определяет изменяющиеся параметры объекта.
Корректор регулятора на основании заданного критерия оптимальности сопоставляет текущие, определяемые идентификатором, значения параметров объекта с актуальными значениями, на основании которых функционирует регулятор. В результате обработки расхождения значений параметров корректор формирует решение об изменении характеристик регулятора и реализует это решение.
В этой системе можно выделить этапы:
1. Идентификация объекта или системы в целом.
2. Расчет коррекции регулятора.
3. Коррекция (настройка) регулятора, изменение его структуры.
Рис. 6.2. Схема системы с самонастраивающимся регулятором: КР – корректор регулятора, ИО - идентификатор объекта, Р – регулятор, О - объект.