
- •2. Некоторые методы анализа систем 10
- •1.1.1.2. Определение управления
- •1.1.1.3. Общие принципы системной организации
- •1.1.2. Общие принципы управления
- •1.1.2.5. Стохастическое управление
- •1.1.2.6. Нечеткое управление
- •1.1.2.7. Дискретное и непрерывное управление
- •1.2. Объекты, системы и их модели (Лекция 2)
- •1.2.1. Математические модели систем и объектов управления.
- •1.2.1.1. Математическая модель
- •1.2.1.2. Способы классификации моделей (объектов)
- •1.2.1.3. Некоторые виды математических моделей
- •1.2.2. Сложные системы
- •1.2.2.1. Примеры и свойства сложных систем
- •Кортежное описание сложных систем
- •1.2.2.3. Структура систем и объектов управления
- •1.2.2.4. Иерархия в системах управления.
- •1.2.2.5. Иерархия целей в системах управления.
- •1.2.2.6. Компромиссы и комплексные критерии
- •2. Некоторые методы анализа систем
- •2.1. Построение и упрощение моделей объекта (Лекция 3)
- •2.1.1. Упрощение моделей объекта
- •2.1.1.1. Замена нестационарной модели набором стационарных
- •2.1.1.2. Линеаризация модели
- •2.1.2. Пример построения модели объекта
- •2.1.2.1. Характеристика объекта
- •2.1.2.2. Разработка математической модели
- •Линеаризация
- •2.1.2.4. Линейная модель объекта
- •2.2. Временные характеристики систем управления (Лекция 4)
- •2.2.1. Линейные нестационарные системы
- •2.2.1.1. Общий вид описания системы
- •2.2.1.2. Решение однородного уравнения
- •2.2.1.3. Решение неоднородного уравнения
- •2.2.1.4. Фундаментальная матрица системы и её свойства
- •2.2.1.5. Весовая и переходная матрицы системы
- •2.2.2. Линейные стационарные системы
- •2.2.2.1. Фундаментальная матрица стационарной линейной системы
- •2.2.2.2. Весовая и переходная матрицы стационарной системы
- •2.3. Передаточная функция (Лекция 5)
- •2.3.1. Некоторые операторы
- •2.3.1.1. Дифференциальный оператор
- •2.3.1.2. Оператор Лапласа
- •2.3.2. Передаточная функция и резольвента
- •2.3.2.1. Фундаментальная матрица (резольвента)
- •2.3.2.2. Матричная передаточная функция
- •2.3.2.3.Простейший пример определения резольвенты (Пример п2.2)
- •2.3.2.4. Метод Фаддеевой (Сурье )определения резольвенты
- •2.3.2.5. Пример применения метода Фаддеевой (Пример 2.3)
- •2.4. Частотные характеристики (функции) систем (Лекция 6)
- •2.4.1. Частотная переходная функция
- •2.4.1.1. Напоминание о представлении комплексных чисел
- •2.4.1.2. Частотная передаточная функция
- •2.4.1.3. Смысл компонент матричной частотной функции (Пример2.4)
- •2.4.1.4. Виды используемых частотных характеристик
- •2.4.1.5. Пример вычисления характеристик (Пример2.5)
- •2.4.2. Логарифмические частотные характеристики
- •2.4.2.1. Смысл логарифмических частотных характеристик
- •2.4.2.2. Определение логарифмических частотных характеристик
- •2.4.2.3. Асимптотические логарифмические частотные характеристики
- •2.4.2.4. Иллюстрация построения асимптотических характеристик (Пример 2.6)
- •2.5. Структурные схемы систем (Лекция 7)
- •2.5.1. Схемы соединения звеньев
- •2.5.1.1. Представление звеньев и связей в виде структурных схем
- •2.5.1.2. Последовательное соединение звеньев
- •2.5.1.3. Параллельное соединение
- •2.5.1.4. Соединение с обратной связью
- •2.5.1.5. Пример определения матрицы возвратной разности (Пример 2.7)
- •2.5.2. Структурные преобразования линейных систем
- •2.5.2.1. Назначение и содержание структурных преобразований
- •2.5.2.2. Правила структурных преобразований линейных систем
- •2.5.2.3. Дополнительные правила для стационарных линейных систем
- •2.5.2.4. Иллюстративный пример (Пример2.8)
- •2.6. Анализ устойчивости систем управления (Лекция 8)
- •2.6.1. Определение устойчивости систем
- •2.6.1.1. Номинальное состояние и понятие устойчивости
- •2.6.1.2. Определения устойчивости решений
- •2.6.1.3. Устойчивость линейных дифференциальных систем
- •2.6.1.4. Пример смесительного бака (Пример2. 9)
- •2.6.2. Устойчивость линейных стационарных систем
- •2.6.2.1. Представление реакции системы с различными собственными числами
- •2.6.2.2. Представление реакции системы с кратными собственными числами
- •2.7.1.2. Необходимые условия
- •2.7.1.3. Достаточные условия
- •2.7.1.4. Пример применения алгоритма Раусса (Пример 2.11)
- •2.7.2. Частотные критерии
- •2.7.2.1. Нестрогое обоснование частотных критериев
- •2.7.2.2. Критерий Михайлова
- •2.7.2.3. Критерий Найквиста
- •3. Методы анализа и синтеза управления.
- •3.1. Методы анализа управления (Лекция 10)
- •3.1.1. Управляемость, наблюдаемость.
- •3.1.1.1. Управляемость: определение (Пример 3.1)
- •3.1.1.2. Наблюдаемость: определение (Пример 3.2)
- •3.1.2. Корневой годограф
- •3.1.2.1. Определение корневого годографа
- •3.1.2.2. Свойства корневого годографа
- •3.1.2.3. Пример построения корневого годографа (Пример 3.3)
- •3.2. Управление и стабилизация (Лекция 11)
- •3.2.1. Цель управления, идеальное управление
- •3.2.1.1. Общая схема разомкнутого и замкнутого управления
- •3.2.1.2. Идеальное управление
- •3.2.1.3. Пример определения идеального управления (Пример 3.4)
- •3.2.1.4. Невозможность реализации идеального управления
- •3.2.1.5. Иллюстрация недостатков идеального управления (Пример 3.5)
- •3.3. Стабилизация с помощью обратной связи (Лекция 12)
- •3.3.1. Введение обратной связи
- •3.3.1.1. Определение обратной связи в скалярном случае
- •3.3.1.2. Иллюстрация определения стабилизирующей обратной связи (Пример 3.6)
- •3.3.2. Общий алгоритм стабилизации
- •3.3.2.1. Общий вид обратной связи
- •3.3.2.2. Замкнутое представление объекта и обратной связи
- •3.3.2.3. Алгоритм выбора стабилизирующей обратной связи в общем случае
- •3.3.3. Некоторые другие законы управления
- •3.3.3.1. Программное управление в комбинации с обратной связью по выходу
- •3.3.3.2. Управление по возмущению
- •3.3.3.3. Управление с обратной связью по ошибке
- •3.4. Удовлетворение некоторых требований к качеству управления (Лекция 13)
- •3.4.1. Некоторые характеристики качества управления
- •3.4.1.1. Переходный процесс детерминированной системы и его некоторые характеристики
- •3.4.1.2. Некоторые требования к переходному процессу и установившейся ошибке
- •3.4.2. Методика удовлетворения требований к качеству
- •3.4.2.1. Теорема о реакции на полиномиальное воздействие
- •3.4.2.2. Обеспечение требования ограниченности установившейся ошибки
- •3.4.2.3. Обеспечение ограниченности амплитуды ошибки при периодическом воздействии
- •3.4.2.4. Обеспечение ограниченности амплитуды ошибки при периодической помехе
- •4. Цифровые системы управления.
- •4.1. Модели, формула полной реакции, устойчивость. (Лекция 14)
- •4.1.1. Модели
- •4.1.1.1. Кусочно-постоянный процесс
- •4.1.1.2. Описание дискретных систем
- •4.1.1.3. Пример дискретной системы (Пример 4.1)
- •4.1.1.1. Дискретизация непрерывной модели
- •4.1.2. Решение разностных уравнений
- •4.1.2.1. Переходная матрица
- •4.1.2.2. Матричная импульсная переходная функция
- •4.1.2.3. Устойчивость
- •4.2. Синтез оптимального линейного дискретного регулятора (Лекция 15)
- •4.2.1. Методика синтеза оптимального управления
- •4.2.1.1. Многошаговое управление
- •4.2.1.2. Критерий оптимальности
- •4.2.1.3. Принцип оптимальности Беллмана
- •4.2.2. Синтез одношагового оптимального управления
- •4.2.2.1. Формирование критерия для одношаговой задачи
- •4.2.2.2. Определение вектора оптимального управления
- •4.2.2.3. Принцип перехода к многошаговой задаче
- •5. Стохастические системы
- •5.1. Стохастические процессы (Лекция 16)
- •5.1.1. Определение и естественные характеристики случайного процесса
- •5.1.1.1. Определение случайного процесса
- •5.1.1.2. Характеристики случайного процесса
- •5.1.2. Спектральное представление случайного процесса
- •5.1.2.1. Спектр функции
- •5.1.2.2. Спектральная плотность
- •5.1.2.3. Физический смысл гармонического анализа случайного процесса
- •5.1.2.4. Взаимосвязь функций времени и их спектрального представления
- •5.1.2.5. Матрица спектральных плотностей энергии
- •5.1.2.6. Пример определения функции спектральной плотности по ковариационной функции (Пример 5.1)
- •5.2. Задачи слежения (Лекция 17)
- •5.2.1. Характеристики качества следящих систем.
- •5.2.1.1. Описание разомкнутой следящей системы
- •5.2.1.2. Описание замкнутой следящей системы.
- •5.2.1.2. Интегральные характеристики качества регулирования
- •5.2.1.3. Среднее значение и дисперсия характеристик качества регулирования
- •5.2.1.4. Передаточные функции замкнутой системы
- •5.2.2. Примеры анализа стохастических систем
- •5.2.2.1. Реакция линейной системы стохастические внешние воздействия
- •5.2.2.2. Реакция линейных дифференциальных систем на белый шум
- •5.2.2.3. Пример дифференциальной системы, возбуждаемой белым шумом(Пример 5.2)
- •5.2.2.4. Моделирование стохастических процессов.
- •5.2.2.5. Моделирование стационарного процесса уравнением 1-го порядка (Пример 5.3)
- •5.2.3. Некоторые принципы проектирования следящих систем.
- •5.2.3.1. Устойчивость
- •5.2.3.2. Требования к следящей системе
- •5.2.3.3. Соглашение о входных воздействиях
- •5.2.4. Использование полос пропускания при проектировании
- •5.2.4.1. Скалярный случай
- •5.2.4.2. Принцип проектирования
- •5.2.4.3. Полоса частот системы
- •5.2.4.4. Полоса частот эталонного процесса
- •5.2.4.5. Реализация принципа проектирования( минимизация ошибки)
- •5.2.4.6. Реализация принципа проектирования ( минимизация входной переменной)
- •5.2.4.7. Оценка длительности переходных процессов
- •6. Адаптивные системы
- •6.1. Адаптивные системы и идентификация (Лекция 17)
- •6.1.1. Основные схемы адаптивных систем
- •6.1.1.1. Предназначение адаптации
- •6.1.1.2. Схема адаптации по разомкнутому контуру
- •6.1.1.3. Схема с самонастраивающимся регулятором
- •6.1.1.4. Схема с настройкой регулятора по эталонной модели
- •6.1.1.5. Общая схема адаптивной системы
- •6.1.2. Идентификация моделей
- •6.1.2.1. Идентификация структурная и параметрическая
- •6.1.2.2. Содержание метода наименьших квадратов
- •6.1.2.3. Рекуррентный алгоритм метода наименьших квадратов
5.2.4. Использование полос пропускания при проектировании
5.2.4.1. Скалярный случай
Ниже используются передаточные функции (5.40): T(p) - замкнутой системы от эталонной переменнойr(t) до управляемой переменнойz(t) иN(p) - от эталонной переменнойr(t) на управляющую переменнуюu(t). Выходная переменная, как и раньше,y(t).
Для простоты и наглядности используем скалярный случай. Пусть r,u,y,z- скаляры и вместо весовых матриц просто коэффициентыWe= 1,Wu = 1. При таких предположениях можно получить следующие выражения для квадрата ошибки слежения и квадрата управляющей величины:
r() |T(i)
– 1|2df,
(5.56)
,
(5.57)
где f =/2.
В этих выражениях по два слагаемых. Первое слагаемое характеризует результат влияния установившегося значения эталонной переменной r0, а второе отражает влияние переменной составляющей эталонного сигнала на квадрат ошибки отработки эталонного сигнала (5.56) и квадрат управляющего воздействия (5.57).
5.2.4.2. Принцип проектирования
Анализ соотношения (5.56) показывает, что установившееся значение квадрата ошибки определяется произведением входного воздействия, характеристики которого R0иr() входят в оба слагаемых, и квадрата модуля передаточной функции. Входное воздействие задано. Влиять при разработке системы можно только на передаточную функцию.
Так
как цель управления состоит в обеспечении,
то отсюда следуетпринцип проектирования
минимизации ошибки: чтобы обеспечить
малое установившееся среднее значение
квадрата ошибки слежения, передаточную
функциюT(p) линейной системы
управления с постоянными параметрами
следует выбирать таким образом, чтобы
выражение
r() |T(i) – 1|2(5.58)
принимало малые значения для всех действительных частот. В частности, если заданные точки нулевые, то значение T(0) должно быть близким к 1. Подобная ситуация имеет место в задачах регулирования, в которых переменная часть эталонной переменной r() = 0 и нужно, чтобыT(0) =1.
Под интегралом (5.56) стоит выражение (5.58). Обычно r() имеет существенное значение в области низких частот и убывает с ростом частоты, как показано на рис. 5.4.
Рис. 5.4. Характерная зависимость амплитуды А (или мощности ) входного сигнала от частоты.
Поэтому для того, чтобы получить малое значение (5.58) необходимо, чтобы |T(i) – 1| было малым в области низких частот, где r() велико. В связи с этим вводятся понятия полосы частот системы и входного сигнала.
5.2.4.3. Полоса частот системы
Пусть T(p) – скалярная передаточная функция асимптотически устойчивой линейной системы с постоянными параметрами и скалярными управлением и управляемой переменной. Тогда полосой частот системы управления является множество частот,0, для которых
| T(i) – 1 |(5.59)
где - заданное число, малое по сравнению с 1.
Если полоса частот представляет собой интервал [1,2], то разность2 -1 является полосой пропускания системы.
Если интервал имеет вид [0, с], тос называется частотой среза системы (см. рис. 5.5).
Рис. 5.5. Иллюстрация полосы пропускания и частоты среза одномерной системы с постоянными параметрами. Предполагается, что T(j)0 при.
Если ε = 0.01 (1%), то с называется однопроцентной частотой среза.