Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Технич. микробиол. Курс лекций.doc
Скачиваний:
139
Добавлен:
09.11.2019
Размер:
5.34 Mб
Скачать

3.2.5 Использование энергии неорганических субстратов

Окисление минеральных веществ в качестве источника энергии используют литотрофные микроорганизмы. В настоящее время известны микроорганизмы, использующие энергию окисления водорода, серы, азота, железа, сурьмы. Литотрофные микроорганизмы отрывают электроны от минеральных соединений и направляют их по цепи переноса электронов. Используемые в качестве доноров минеральные соединения характеризуются различным окислительно-восстанови-тельным потенциалом, поэтому оторванные от них электроны могут поступать на различные участки дыхательной цепи. Дыхательная цепь у литотрофных микроорганизмов работает в двух направлениях – прямой перенос электронов сопряженный с окислительным фосфорилированием, обратный перенос электронов, идущий с потреблением АТФ.

Окисление серы осуществляют серобактерии, откладывающие серу в клетках, и некоторые тионовые бактерии. Микробиологический процесс окисления сероводорода и других соединений серы обеспечивает переход серы из недоступного для растений состояния в доступные для них сульфаты.

Железобактерии получают энергию в процессе окисления кислородом воздуха двухвалентного железа до трехвалентного.

Для нитрифицирующих бактерий источником энергии являются реакции окисления аммиака сначала до азотистой, а затем до азотной кислот.

Водородные бактерии добывают энергии в реакции окисления кислородом воздуха молекулярного водорода. Некоторые водородокисляющие бактерии могут использовать энергию окисления СО до СО2 (осуществлять карбоксидооксидацию).

3.6.6 Использование энергии света

Способность использовать энергию света обуславливается наличием у большинства фототрофных микроорганизмов специфических пигментов – бактериохлорофиллов и каротиноидов.

Световая энергии улавливается системой поглощающих свет пигментов и передается на молекулу хлорофилла, которая переходит в возбужденное состояние вследствие перехода одного из электронов на более высокий энергетический уровень. Переходя по цепи переноса, электрон отдает свою энергию системе АДФ-АТФ, в результате чего энергия света трансформируется в энергию макроэргической связи молекулы АТФ, т.е. происходит фотосинтетическое фосфорилирование, которое бывает циклическое и нециклическое. В случае циклического процесса электрон возвращается к исходному донору, отдавая полученную им энергию в процессе перехода через ряд переносчиков по термодинамическому закону, одним из таких переносчиков является цитохром с, обеспечивающий фосфорилирование: АДФ. При нециклическом фосфорилировании возбужденный электрон передается на НАД+ с образованием НАДН2.

У фотосинтетических бактерий донорами водорода для реакций синтезе могут быть как неорганические, так и органические вещества. Фотолитоавтотрофы используют в качестве донора водорода Н2S: свет

СО2 + Н2S → (СН2О) + Н2О + 2 S

Такой вид фотосинтеза называется фоторедукцией. Основное отличие бактериальной фоторедукции от фотосинтеза зеленых растений и водорослей следующие: бактериальный фотосинтез протекает в анаэробных условиях и не сопровождается выделением кислорода; донором водорода для восстановления СО2 в большинстве случаев является сероводород, а не вода.

Микроскопические водоросли и цианобактерии (как и высшие растения) фотосинтез осуществляют с выделением О2, донором электронов (водорода) служит вода:

свет

СО2 + Н2О → (СН2О) + О2