- •Введение
- •Раздел № 1. Физико-механические основы обработки металлов резанием
- •1.1. Классификация движений в металлорежущих станках. Схемы обработки
- •1.2. Методы формообразования поверхностей деталей машин
- •1.3. Режим резания и геометрия срезаемого слоя
- •1.4. Элементы токарного проходного резца. Определение углов резца
- •1.5. Геометрия инструмента и ее влияние на процесс резания и качество обработанной поверхности
- •1.6. Физическая сущность процесса резания
- •1.7. Силы резания
- •1.8. Наростообразование при резании металлов
- •1.9. Упрочнение при обработке резанием
- •1.10. Тепловые явления процесса резания
- •1.11. Трение, износ и стойкость инструмента
- •1.12. Влияние вибраций на качество обработки
- •Раздел № 2. Лезвийная обработка заготовок деталей машин резанием
- •2.1. Общая характеристика лезвийной механической обработки резанием
- •2.2. Точение
- •Токарные резцы
- •Режим резания
- •1) Глубина резания t, [мм] – толщина слоя материала, срезаемая за один рабочий ход резца.
- •Проверка элементов режима резания по мощности электродвигателя станка
- •Нормирование токарной операции
- •Технологические требования к конструкциям деталей, обрабатываемых точением
- •2.3. Сверление
- •Режущий инструмент
- •Основные операции обработки заготовок на сверлильных станках
- •Режим резания
- •Технологические требования к конструкциям деталей, обрабатываемых сверлением
- •2.4. Фрезерование
- •Технологические требования к конструкциям деталей, обрабатываемых фрезерованием
- •2.5. Протягивание
- •Протяжки
- •Элементы круглой протяжки (рис. 2.5.1)
- •Геометрия зуба протяжки
- •Технологические требования к конструкциям деталей, обрабатываемых протягиванием
- •2.6. Строгание
- •Технологические требования к конструкциям деталей, обрабатываемых строганием
- •Раздел № 3. Абразивная и отделочная обработка заготовок деталей машин резанием
- •3.1. Общая характеристика абразивной механической обработки резанием
- •Основные характеристики абразивного инструмента
- •3.2. Шлифование
- •3.3. Притирка
- •3.4. Хонингование
- •3.5. Суперфиниширование
- •3.6. Полирование
- •Раздел № 4. Электрофизические и электрохимические методы обработки заготовок деталей машин
- •4.1. Общая характеристика электрофизических и электрохимических методов обработки
- •4.2. Электроэрозионная обработка
- •Область применения ээо
- •Методы ээо
- •4.3. Электрохимическая обработка
- •Сущность метода эхо
- •4.4. Химическая обработка
- •Особенности химического травления
- •4.5. Ультразвуковая обработка
- •4.6. Лучевые методы обработки
- •Электронно-лучевая обработка
- •Светолучевая обработка
- •4.7. Плазменная обработка
- •4.8. Комбинированные физико-химические методы обработки
- •Химико-механическая обработка
- •Ультразвуковая механическая обработка
- •Плазменно-механическая обработка
1.7. Силы резания
Деформирование и срезание с заготовки слоя металла происходит под действием внешней силы Р, приложенной со стороны инструмента к обрабатываемой заготовке. Направление вектора силы совпадает с вектором скорости резания V.
Работа, затрачиваемая на деформацию и разрушение материала заготовки (PV), расходуется на упругое и пластическое деформирование металла, его разрушение, преодоление сил трения задних поверхностей инструмента о заготовку и стружки о переднюю поверхность инструмента.
В результате сопротивления металла деформированию возникают реактивные силы, действующие на режущий инструмент. Это силы упругого (Ру1 и Ру2) и пластического (.Рп1 и Рп2) деформирования, векторы которых направлены перпендикулярно к передней и главной задней поверхностям резца (рис. 1.7.1, а).
Рис. 1.7.1. Силы, действующие на резец (а), и разложение силы резания на составляющие (б)
Наличие нормальных сил обусловливает возникновение сил трения (T1 и Т2), направленных по передней и главной задней поверхностям инструмента. Указанную систему сил приводят к равнодействующей силе резания:
.
Считают, что точка приложения силы R находится на рабочей части главной режущей кромки инструмента (рис. 1.7.1, б). Абсолютная величина, точка приложения и направление равнодействующей силы резания R в процессе обработки переменны. Это можно объяснить неоднородностью структуры металла заготовки, переменной поверхностной твердостью материала заготовки, непостоянством срезаемого слоя металла (наличие штамповочных и литейных уклонов и др.), изменением углов и в процессе резания. Для расчетов используют не равнодействующую силу резания, а ее составляющие, действующие по трем взаимно перпендикулярным направлениям – координатным осям металлорежущего станка. Для токарно-винторезного станка: ось X – линия центров станка, ось Y – горизонтальная линия, перпендикулярная к линии центров станка, ось Z – линия, перпендикулярная к плоскости XOY (рис. 1.7.1, б).
Вертикальная составляющая силы резания R действует в плоскости резания в направлении главного движения (по оси Z). По силе Рz, определяют крутящий момент на шпинделе станка, эффективную мощность резания, деформацию изгиба заготовки в плоскости XOZ, изгибающий момент, действующий на стержень резца, а также ведут динамический расчет механизмов коробки скоростей станка. Радиальная составляющая силы резания Рy действует в плоскости XOY перпендикулярно к оси заготовки. По силе Рy определяют величину упругого отжатия резца от заготовки и величину деформации изгиба заготовки в плоскости XOY. Осевая составляющая силы резания Рx действует в плоскости XOY, вдоль оси заготовки. По силе Рx рассчитывают механизм подачи станка, изгибающий момент, действующий на стержень резца.
По величине деформации заготовки от сил Рz и Ру рассчитывают ожидаемую точность размерной обработки заготовки и погрешность ее геометрической формы. По величине суммарного изгибающего момента от сил Рz и Рx рассчитывают стержень резца на прочность. Равнодействующая сила резания, R:
.
Силу Рz, Н, определяют по эмпирической формуле:
,
где Cp – коэффициент, учитывающий физико-механические свойства материала обрабатываемой заготовки; Kp – коэффициент, учитывающий факторы, не вошедшие в формулу (углы резца, материал резца и т. д.). Значения коэффициентов Kp, Cp и показателей степеней x, y, n даны в справочниках для конкретных условий обработки.
Аналогичные формулы существуют для определения сил Ру и Рх. Условно считают, что для острого резца с = 15 0, = 45 0, = 0 при точении стали без охлаждения Рz : Ру : Рх = 1 : 0,45 : 0,35. Знание величин и направлений сил Рz, Ру и Рх необходимо для расчета элементов станка, приспособлений и режущего инструмента.
Крутящий момент на шпинделе станка, Н м:
Мкр = Pz Dзаг / (2 1000).
Эффективной мощностью Ne называют мощность, расходуемую на процесс деформирования и срезания с заготовки слоя металла. При точении цилиндрической поверхности на токарно-винторезном станке эффективная мощность, кВт:
.
Мощность электродвигателя станка Nэл, кВт:
.
где – КПД механизмов и передач станка.