
- •Лекция 1.
- •1.1. Основные понятия и определения.
- •1.2. Требования к модели. Функции модели
- •1.3. Классификация моделей
- •1.3.1. Статические и динамические модели
- •1.3.2. Детерминированные и стохастические модели
- •1.3.3. Классификация математических моделей.
- •Лекция 2. Разновидности математических задач, возникающих при моделировании эмс.
- •2.1. Приближение функций. Интерполяция, экстраполяция, аппроксимация. Приближение периодических функций.
- •2.2. Алгебра комплексных чисел.
- •2.3. Решение систем линейных алгебраических уравнений (слау), матричная алгебра.
- •2.4. Решение систем нелинейных алгебраических уравнений.
- •2.5. Решение систем обыкновенных дифференциальных уравнений.
- •2.6. Решение систем дифференциальных уравненийв частных производных.
- •Лекция 3. Ошибки вычислений.
- •3.1. Общие характеристики вычислительных процессов.
- •3.2. Классификация погрешностей.
- •3.3. Абсолютная и относительная погрешности. Точные десятичные знаки.
- •Лекция 4. Приближение функций
- •4.1. Каноническая форма интерполяционного полинома.
- •4.2. Интерполяционный полином Лагранжа.
- •4.3. Интерполяция сплайнами.
- •4.3.1. Линейный сплайн
- •4.3.2. Кубический сплайн
- •Лекция 5. Аппроксимация функций.
- •5.1. Степенной базис
- •5.2. Базис в виде классических ортогональных полиномов
- •5.3. Малая помехоустойчивость метода наименьших квадратов при решении задач идентификации
- •5.3.1. Теория множественности моделей
- •Лекция 6. Приближение периодических функций.
- •6.1. Общие сведения.
- •6.2. Ряды Фурье.
- •6.3. Функции Уолша.
- •Лекция 7. Решение систем линейных алгебраических уравнений.
- •7.1. Область применения слау в задачах математического моделирования эмс.
- •7.2. Прямые методы решения слау.
- •7.3. Итерационные методы.
- •Лекция 8. Решение нелинейных уравнений.
- •8.1. Отделение корней уравнения.
- •8.1.1. Графический метод отделения корней.
- •8.1.2. Аналитический метод отделения корней.
- •8.2. Метод половинного деления (метод дихотомии).
- •8.3. Метод хорд.
- •8.4. Метод касательных (метод Ньютона-Рафсона).
- •Лекция 9. Численное интегрирование и дифференцирование.
- •9.1. Метод прямоугольников.
- •9.2. Метод трапеций.
- •9.3. Метод Симпсона.
- •9.4. Численное дифференцирование.
- •Лекция 10. Решение систем обычных дифференциальных уравнений (оду).
- •10.1. Метод Эйлера.
- •10.2. Методы Рунге-Кутты.
- •10.2.1. Метод Рунге-Кутты-Мерсона
- •10.3. Метод Адамса.
- •10.4. Визуализация решений оду.
- •Лекция 11. Визуальное моделирование динамических систем.
- •Лекция 12. Численное решение систем дифференциальных уравнений в частных производных.
- •12.1. Уравнения математической физики.
- •12.1.1. Уравнения параболического типа.
- •12.1.2. Уравнения гиперболического типа.
- •12.1.3. Уравнения эллиптического типа
- •12.2. Основные понятия метода сеток.
- •Лекция 13. Решение оптимизационных задач.
- •13.1. Методы безусловной одномерной оптимизации
- •13.1.1. Постановка задачи.
- •13.1.2 Метод обратного переменного шага.
- •13.1.3. Метод половинного деления
- •13.1.4. Метод квадратичной аппроксимации (метод Пауэлла).
- •13.2 Методы оптимизации многомерных функций.
- •13.2.1. Метод покоординатного спуска.
- •13.2.2. Метод наискорейшего спуска (метод градиентов)
- •13.2.3. Метод Нелдера-Мида.
- •13.2.3. Метод пчелиного роя.
- •Лекция 14. Идентификация параметров эмс.
- •14.1. Аппроксимация переходных характеристик элементарными динамическими звеньями
- •14.1.1. Апериодическая переходная характеристика
- •14.1.2.Колебательная переходная характеристика.
Лекция 6. Приближение периодических функций.
6.1. Общие сведения.
Спектральная (частотная) форма представления сигналов использует разложение сигнальных функций на периодические составляющие.
Периодичность гармонических колебаний исследовал еще в VI веке до нашей эры Пифагор и даже распространил ее на описание гармонического движения небесных тел. Термин "spectrum" впервые применил И. Ньютон в 1571 году при описании разложения на многоцветную полосу солнечного света, проходящего через стеклянную призму, и дал первую математическую трактовку периодичности волновых движений. В 18-м веке Д. Бернулли, Л. Эйлер и Ж. Лагранж в своих работах по математике и физике показали, что произвольные периодические функции представляют собой суммы простейших гармонических функций – синусов и косинусов кратных частот. Эти суммы получили название рядов Фурье, после того как в 1807 году французский инженер Жан Батист Фурье обосновал метод вычисления коэффициентов тригонометрического ряда, которым можно отображать с абсолютной точностью (при бесконечном числе членов ряда) или аппроксимировать с заданной точностью (при ограничении числа членов ряда) любую периодическую функцию, определенную на интервале одного периода T = b-a, и удовлетворяющую условиям Дирихле (ограниченная, кусочно-непрерывная, с конечным числом разрывов 1-го рода). Разложение сигнала на гармонические функции получило название прямого преобразования Фурье (Fourier transform). Обратный процесс – синтез сигнала по гармоникам – называется обратным преобразованием Фурье (inverse Fourier transform).
Жан-Батист Жозеф ФУРЬЕ. Jean-Baptiste Joseph Fourier, 1768–1830.
Французский математик. Получил образование в церковной школе и военном училище, затем работал преподавателем математики. На протяжении всей жизни активно занимался политикой, арестован в 1794 году за защиту жертв террора Французской революции, выпущен из тюрьмы после смерти Робеспьера. Принимал участие в создании знаменитой Политехнической школы в Париже. Сопровождал Наполеона в Египет и был назначен губернатором Нижнего Египта. По возвращении во Францию в 1801 году назначен губернатором одной из провинций Франции. В 1822 году стал постоянным секретарем Французской академии наук.
На первых этапах своего развития данное направление, получившее название гармонического анализа, имело теоретический характер и использовалось в естественных науках для выявления и изучения состава периодических составляющих в различных явлениях и процессах (активность солнца, девиация магнитного поля Земли, метеорологические наблюдения, и т.п.). Теория гармонического анализа была развита в работах Дирихле, Гаусса, Чебышева, Винера и других с распространением на произвольные функции с бесконечным периодом (интегралы Фурье).
Положение резко изменилось с появлением электро- и радиотехнических отраслей науки и техники, где гармонический состав сигналов приобрел конкретный физический смысл, а математический аппарат спектрального преобразования функций стал основным инструментом анализа и синтеза сигналов и систем. В настоящее время спектральный анализ является основным методом обработки экспериментальных данных во многих отраслях науки и техники.
Периодические несинусоидальные функции широко встречаются в действующих электромеханических системах. Такие функции появляются в результате работы устройств силовой преобразовательной техники, сигналы несинусоидальной формы широко используются в радиоэлектронных устройствах, например источники прямоугольного и пилообразного напряжений и т.д.