
- •Часть 1
- •Предисловие
- •Введение
- •Основные физические законы функционирования электрических машин
- •Общие вопросы машин постоянного тока
- •2.1. Принцип действия машин постоянного тока
- •2.2. Конструкция машин постоянного тока
- •2.3. Обмотки якоря машин постоянного тока
- •2.3.1. Принципы реализации обмотки якоря и основные понятия
- •2.3.2. Простая петлевая обмотка
- •2.3.3. Простая волновая обмотка
- •2.3.4. Сложная волновая обмотка
- •2.3.5. Сложноволновая обмотка
- •2.4. Эквипотенциальные соединения обмоток якоря
- •2.5. Способы создания магнитного поля или способы возбуждения машин постоянного тока
- •2.6. Эдс якорной обмотки машин постоянного тока
- •2.7. Механический момент на валу машины постоянного тока
- •2.8. Магнитное поле машины постоянного тока, работающей в режиме холостого хода
- •2.9. Магнитное поле нагруженной машины постоянного тока. Реакция якоря
- •2.10. Коммутация обмотки якоря машин постоянного тока
- •Двигатели постоянного тока
- •3.1. Принцип действия двигателей постоянного тока
- •3.2. Основные уравнения двигателя постоянного тока
- •3.3. Потери и коэффициент полезного действия двигателей постоянного тока
- •3.4. Характеристики двигателей постоянного тока
- •3.4.1. Характеристики двигателей с независимым и параллельным возбуждением
- •3.4.2. Характеристики двигателей с последовательным возбуждением
- •3.4.3. Характеристики двигателей постоянного тока смешанного возбуждения
- •3.5. Пуск двигателей постоянного тока
- •3.6. Регулирование частоты вращения двигателей постоянного тока
- •3.6.1. Регулирование частоты вращения двигателей с параллельным, независимым и смешанным возбуждением
- •3.6.2. Регулирование частоты вращения двигателя с последовательным возбуждением
- •Генераторы постоянного тока
- •4.1. Классификация генераторов постоянного тока по способу возбуждения
- •4.2. Энергетическая диаграмма генераторов постоянного тока
- •4.3. Основные характеристики генераторов постоянного тока
- •4.4. Характеристики генератора с независимым возбуждением
- •4.4.1. Характеристика холостого хода
- •4.4.2. Нагрузочная характеристика генератора
- •4.4.3. Внешняя характеристика
- •4.4.4. Регулировочная характеристика
- •4.4.5. Характеристика полного падения напряжения
- •4.5. Рабочая точка нагруженного генератора
- •4.6. Характеристики генератора с параллельным возбуждением
- •4.6.1. Условия самовозбуждения генераторов
- •4.6.2. Характеристика холостого хода
- •4.6.3. Нагрузочная характеристика
- •4.6.4. Внешняя и регулировочная характеристика генератора с параллельным возбуждением
- •4.7. Генераторы с последовательным возбуждением
- •4.8. Генераторы постоянного тока со смешанным возбуждением
- •4.9. Использование генераторов постоянного тока
- •4.10. Параллельная работа генераторов
- •Трансформаторы
- •5.1. Принцип действия трансформаторов
- •5.2. Конструкция однофазных трансформаторов
- •5.3. Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора
- •5.4. Режим холостого хода трансформатора
- •5.5. Работа трансформатора в режиме нагрузки
- •5.6. Приведенный трансформатор и его схема замещения
- •5.7. Экспериментальное определение параметров трансформатора
- •5.8. Изменение выходного напряжения трансформатора при изменении тока нагрузки. Внешняя характеристика трансформатора
- •5.9. Внешняя характеристика трансформаторов
- •5.10. Трехфазные трансформаторы. Принцип действия трехфазных трансформаторов
- •5.11. Схемы и группы соединения обмоток трехфазных трансформаторов
- •5.12. Специальные трансформаторы
- •5.12.1. Автотрансформаторы
- •5.12.2. Измерительные трансформаторы
- •5.13. Параллельная работа трансформаторов
- •Асинхронные машины
- •6.1. Магнитные поля асинхронных двигателей. Вращающееся магнитное поле
- •6.2. Эллиптические и пульсирующие магнитные поля
- •6.3. Принцип действия асинхронного двигателя
- •6.4. Конструкция асинхронного двигателя
- •6.5. Обмотки асинхронных машин
- •6.6. Электродвижущие силы статорной и роторной обмоток
- •6.7. Магнитный поток асинхронных машин
- •6.8. Векторная диаграмма асинхронного двигателя
- •6.9. Электрическая схема замещения асинхронного двигателя
- •6.10. Энергетические процессы асинхронной машины
- •6.11. Энергетическая диаграмма асинхронного двигателя
- •6.12. Общее уравнение вращающего момента асинхронной машины
- •6.13. Уравнение механической характеристики асинхронного двигателя
- •6.14. Формула Клосса
- •6.15. Эквивалентная схема замещения асинхронной машины с намагничивающей цепью, приведенной к сетевым зажимам
- •6.16. Круговая диаграмма асинхронной машины. Построение диаграммы
- •6.17. Анализ круговой диаграммы
- •6.18. Пуск трехфазных асинхронных двигателей
- •6.19. Пуск двигателей с фазным ротором
- •6.20. Пуск двигателя с короткозамкнутым ротором
- •6.21. Двигатели со специальной роторной обмоткой и улучшенными пусковыми характеристиками
- •6.22. Способы регулирования частоты вращения трехфазного асинхронного двигателя
- •6.22.1. Изменение частоты вращения с помощью изменения числа пар полюсов
- •6.22.2. Изменение частоты вращения двигателя изменением частоты сети
- •6.22.3. Регулирование частоты вращения ротора асинхронных двигателей изменением сопротивления роторной цепи
- •6.23. Рабочие характеристики асинхронных двигателей
- •Зависимость скорости вращения ротора двигателя от выходной мощности
- •Зависимость механического момента на валу двигателя от выходной мощности
- •Зависимость кпд двигателя от выходной мощности
- •Зависимость коэффициента потребляемой мощности от нагрузки (рис. 6.59)
- •Зависимость потребляемой двигателем мощности от выходной мощности
- •Зависимость скольжения двигателя от выходной мощности
- •6.24. Работа асинхронного двигателя в различных режимах
- •6.25. Работа асинхронной машины с фазным ротором в режиме регулятора трехфазного напряжения
- •6.26. Однофазные асинхронные двигатели
- •6.27. Маркировка выводов асинхронного двигателя
- •Синхронные генераторы
- •7.1. Принцип действия синхронных машин
- •7.2. Конструкция синхронной машины
- •7.3. Режим холостого хода генератора
- •7.4. Реакция якоря синхронной машины
- •7.4.1. Физическая природа реакций якоря
- •7.4.2. Реакция якоря в неявнополюсной машине
- •7.4.3. Реакция якоря в явнополюсной машине. Теория двух реакций
- •7.5. Векторные диаграммы напряжений трехфазного синхронного генератора
- •7.5.1. Диаграмма электродвижущих и намагничивающих сил трехфазных синхронных генераторов с неявно выраженными полюсами
- •7.5.2. Векторная диаграмма эдс трехфазного синхронного генератора с явно выраженными полюсами (диаграмма Блонделя)
- •7.6. Изменение напряжения на выходе синхронного генератора
- •7.6.1. Синхронное сопротивление
- •7.6.2. Изменение напряжения на выходе генератора при изменении нагрузки
- •7.7. Основные характеристики синхронного генератора
- •7.7.1. Характеристика холостого хода
- •7.7.2. Характеристика короткого замыкания
- •7.7.3. Нагрузочная характеристика
- •7.7.4. Внешние характеристики
- •7.7.5. Регулировочные характеристики генератора
- •7.8. Включение в сеть трехфазных генераторов или параллельная работа генераторов переменного тока
- •7.9. Угловые характеристики синхронных генераторов
- •7.10. Мощность синхронизации и момент синхронизации
- •7.11. Влияние тока возбуждения на режим работы синхронного генератора
- •7.12. Потери энергии и коэффициент полезного действия синхронного генератора
- •Синхронные двигатели
- •8.1. Принцип действия синхронных двигателей
- •8.2. Векторная диаграмма напряжений синхронного двигателя
- •8.3. Мощность и механический момент синхронного двигателя
- •8.5. Характеристики синхронного двигателя
- •8.6. Методы пуска синхронных двигателей
- •8.7. Синхронные компенсаторы
- •8.8. Способы возбуждения синхронных машин
- •Заключение
- •Список литературы
- •Оглавление
- •440026, Пенза, Красная, 40.
8.3. Мощность и механический момент синхронного двигателя
Связь между электромагнитным моментом и мощностью двигателя выражается уравнением
,
где
– угловая синхронная скорость ротора.
Переход синхронной машины от генераторного режима работы к работе машины в режиме двигателя вызывает изменение знака угла . Можно получить выражение мощности и момента синхронной машины, работающей в режиме двигателя, исходя из соответствующего выражения для генератора, введя в него отрицательные значения угла . Изменение знака мощности означает изменение направления потока энергии. Для двигателя с явно выраженными полюсами, пренебрегая потерями в статорной обмотке, получают
.
Электромагнитный момент синхронного двигателя
.
Синхронизирующий момент, который определяет способность машины оставаться в синхронизме с сетью
,
и
мощность синхронизации
.
Рис. 8.3
и
.
В соответствии с угловой характеристикой
двигателя можно сказать, что область
стабильного функционирования синхронной
машины определяется величиной угла
,
при котором синхронизирующий момент
имеет положительные значения. Для
двигателя с неявно выраженными полюсами
.
Для двигателя с неявно выраженными полюсами:
:
.
Для
синхронного двигателя, как и для
генератора, может быть построена
векторная диаграмма для различных
значений тока
возбуждения, когда
активная мощность остается неизменной
.
8.4. V-образные характеристики синхронных двигателей
Сами по себе векторные диаграммы синхронных двигателей не представляют особого интереса.
Особый интерес представляют так называемые « »-образные характеристики синхронного двигателя, аналогичные -образным характеристикам генератора по внешнему виду, однако имеют совершенно другой смысл.
Рис. 8.4
находится на прямой
.
При постоянной развиваемой мощности и
при увеличении тока возбуждения ЭДС
двигателя увеличится до значения
.
При таком значении ЭДС ток двигате-
ля
совпадает с напряжением сети по фазе.
Это оптимальное значение тока возбуждения.
При дальнейшем увеличении тока возбуждения
ЭДС двигателя увеличится. Одновременно
увеличится ток двигателя. При этом ток
будет опережать напряжение на некоторый
угол. Трем значениям тока возбуждения
на векторной диаграмме соответствуют
векторы с одним штрихом, двумя и тремя
штрихами.
Рис. 8.5
Необходимо отметить, что в области недовозбуждения имеется ограничение механической стабильности, когда двигатель не может обеспечить необходимого механического момента.
Максимальный
момент, развиваемый двигателем, может
быть определен из выражения (для
)
и
зависит от величины ЭДС
.
Уменьшая ток возбуждения, уменьшают
и соответствующим образом сокращают
максимальный момент
(рис. 8.5). Точка, для которой
равен моменту сопротивления, определяет
предел механической стабильности.