- •Часть 1
- •Предисловие
- •Введение
- •Основные физические законы функционирования электрических машин
- •Общие вопросы машин постоянного тока
- •2.1. Принцип действия машин постоянного тока
- •2.2. Конструкция машин постоянного тока
- •2.3. Обмотки якоря машин постоянного тока
- •2.3.1. Принципы реализации обмотки якоря и основные понятия
- •2.3.2. Простая петлевая обмотка
- •2.3.3. Простая волновая обмотка
- •2.3.4. Сложная волновая обмотка
- •2.3.5. Сложноволновая обмотка
- •2.4. Эквипотенциальные соединения обмоток якоря
- •2.5. Способы создания магнитного поля или способы возбуждения машин постоянного тока
- •2.6. Эдс якорной обмотки машин постоянного тока
- •2.7. Механический момент на валу машины постоянного тока
- •2.8. Магнитное поле машины постоянного тока, работающей в режиме холостого хода
- •2.9. Магнитное поле нагруженной машины постоянного тока. Реакция якоря
- •2.10. Коммутация обмотки якоря машин постоянного тока
- •Двигатели постоянного тока
- •3.1. Принцип действия двигателей постоянного тока
- •3.2. Основные уравнения двигателя постоянного тока
- •3.3. Потери и коэффициент полезного действия двигателей постоянного тока
- •3.4. Характеристики двигателей постоянного тока
- •3.4.1. Характеристики двигателей с независимым и параллельным возбуждением
- •3.4.2. Характеристики двигателей с последовательным возбуждением
- •3.4.3. Характеристики двигателей постоянного тока смешанного возбуждения
- •3.5. Пуск двигателей постоянного тока
- •3.6. Регулирование частоты вращения двигателей постоянного тока
- •3.6.1. Регулирование частоты вращения двигателей с параллельным, независимым и смешанным возбуждением
- •3.6.2. Регулирование частоты вращения двигателя с последовательным возбуждением
- •Генераторы постоянного тока
- •4.1. Классификация генераторов постоянного тока по способу возбуждения
- •4.2. Энергетическая диаграмма генераторов постоянного тока
- •4.3. Основные характеристики генераторов постоянного тока
- •4.4. Характеристики генератора с независимым возбуждением
- •4.4.1. Характеристика холостого хода
- •4.4.2. Нагрузочная характеристика генератора
- •4.4.3. Внешняя характеристика
- •4.4.4. Регулировочная характеристика
- •4.4.5. Характеристика полного падения напряжения
- •4.5. Рабочая точка нагруженного генератора
- •4.6. Характеристики генератора с параллельным возбуждением
- •4.6.1. Условия самовозбуждения генераторов
- •4.6.2. Характеристика холостого хода
- •4.6.3. Нагрузочная характеристика
- •4.6.4. Внешняя и регулировочная характеристика генератора с параллельным возбуждением
- •4.7. Генераторы с последовательным возбуждением
- •4.8. Генераторы постоянного тока со смешанным возбуждением
- •4.9. Использование генераторов постоянного тока
- •4.10. Параллельная работа генераторов
- •Трансформаторы
- •5.1. Принцип действия трансформаторов
- •5.2. Конструкция однофазных трансформаторов
- •5.3. Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора
- •5.4. Режим холостого хода трансформатора
- •5.5. Работа трансформатора в режиме нагрузки
- •5.6. Приведенный трансформатор и его схема замещения
- •5.7. Экспериментальное определение параметров трансформатора
- •5.8. Изменение выходного напряжения трансформатора при изменении тока нагрузки. Внешняя характеристика трансформатора
- •5.9. Внешняя характеристика трансформаторов
- •5.10. Трехфазные трансформаторы. Принцип действия трехфазных трансформаторов
- •5.11. Схемы и группы соединения обмоток трехфазных трансформаторов
- •5.12. Специальные трансформаторы
- •5.12.1. Автотрансформаторы
- •5.12.2. Измерительные трансформаторы
- •5.13. Параллельная работа трансформаторов
- •Асинхронные машины
- •6.1. Магнитные поля асинхронных двигателей. Вращающееся магнитное поле
- •6.2. Эллиптические и пульсирующие магнитные поля
- •6.3. Принцип действия асинхронного двигателя
- •6.4. Конструкция асинхронного двигателя
- •6.5. Обмотки асинхронных машин
- •6.6. Электродвижущие силы статорной и роторной обмоток
- •6.7. Магнитный поток асинхронных машин
- •6.8. Векторная диаграмма асинхронного двигателя
- •6.9. Электрическая схема замещения асинхронного двигателя
- •6.10. Энергетические процессы асинхронной машины
- •6.11. Энергетическая диаграмма асинхронного двигателя
- •6.12. Общее уравнение вращающего момента асинхронной машины
- •6.13. Уравнение механической характеристики асинхронного двигателя
- •6.14. Формула Клосса
- •6.15. Эквивалентная схема замещения асинхронной машины с намагничивающей цепью, приведенной к сетевым зажимам
- •6.16. Круговая диаграмма асинхронной машины. Построение диаграммы
- •6.17. Анализ круговой диаграммы
- •6.18. Пуск трехфазных асинхронных двигателей
- •6.19. Пуск двигателей с фазным ротором
- •6.20. Пуск двигателя с короткозамкнутым ротором
- •6.21. Двигатели со специальной роторной обмоткой и улучшенными пусковыми характеристиками
- •6.22. Способы регулирования частоты вращения трехфазного асинхронного двигателя
- •6.22.1. Изменение частоты вращения с помощью изменения числа пар полюсов
- •6.22.2. Изменение частоты вращения двигателя изменением частоты сети
- •6.22.3. Регулирование частоты вращения ротора асинхронных двигателей изменением сопротивления роторной цепи
- •6.23. Рабочие характеристики асинхронных двигателей
- •Зависимость скорости вращения ротора двигателя от выходной мощности
- •Зависимость механического момента на валу двигателя от выходной мощности
- •Зависимость кпд двигателя от выходной мощности
- •Зависимость коэффициента потребляемой мощности от нагрузки (рис. 6.59)
- •Зависимость потребляемой двигателем мощности от выходной мощности
- •Зависимость скольжения двигателя от выходной мощности
- •6.24. Работа асинхронного двигателя в различных режимах
- •6.25. Работа асинхронной машины с фазным ротором в режиме регулятора трехфазного напряжения
- •6.26. Однофазные асинхронные двигатели
- •6.27. Маркировка выводов асинхронного двигателя
- •Синхронные генераторы
- •7.1. Принцип действия синхронных машин
- •7.2. Конструкция синхронной машины
- •7.3. Режим холостого хода генератора
- •7.4. Реакция якоря синхронной машины
- •7.4.1. Физическая природа реакций якоря
- •7.4.2. Реакция якоря в неявнополюсной машине
- •7.4.3. Реакция якоря в явнополюсной машине. Теория двух реакций
- •7.5. Векторные диаграммы напряжений трехфазного синхронного генератора
- •7.5.1. Диаграмма электродвижущих и намагничивающих сил трехфазных синхронных генераторов с неявно выраженными полюсами
- •7.5.2. Векторная диаграмма эдс трехфазного синхронного генератора с явно выраженными полюсами (диаграмма Блонделя)
- •7.6. Изменение напряжения на выходе синхронного генератора
- •7.6.1. Синхронное сопротивление
- •7.6.2. Изменение напряжения на выходе генератора при изменении нагрузки
- •7.7. Основные характеристики синхронного генератора
- •7.7.1. Характеристика холостого хода
- •7.7.2. Характеристика короткого замыкания
- •7.7.3. Нагрузочная характеристика
- •7.7.4. Внешние характеристики
- •7.7.5. Регулировочные характеристики генератора
- •7.8. Включение в сеть трехфазных генераторов или параллельная работа генераторов переменного тока
- •7.9. Угловые характеристики синхронных генераторов
- •7.10. Мощность синхронизации и момент синхронизации
- •7.11. Влияние тока возбуждения на режим работы синхронного генератора
- •7.12. Потери энергии и коэффициент полезного действия синхронного генератора
- •Синхронные двигатели
- •8.1. Принцип действия синхронных двигателей
- •8.2. Векторная диаграмма напряжений синхронного двигателя
- •8.3. Мощность и механический момент синхронного двигателя
- •8.5. Характеристики синхронного двигателя
- •8.6. Методы пуска синхронных двигателей
- •8.7. Синхронные компенсаторы
- •8.8. Способы возбуждения синхронных машин
- •Заключение
- •Список литературы
- •Оглавление
- •440026, Пенза, Красная, 40.
Основные физические законы функционирования электрических машин
Как и другие устройства, электрические машины созданы и функционируют на базе природных явлений, зафиксированных человеком и описанных в форме физических законов. Как уже указывалось выше, под электрической машиной подразумевают устройство, преобразующее электрическую и механическую энергию. При этом речь идет не только о преобразовании электрической энергии в механическую или о преобразовании механической в электрическую, но и о преобразовании электрической энергии в электрическую и механической в механическую. Почти все виды электромеханических генераторов электрической энергии являются преобразователями механической энергии в электрическую энергию.
Электрические двигатели представляют собой преобразователи электрической энергии в механическую энергию. Трансформаторы преобразуют электрическую энергию в электрическую энергию. Существуют устройства, преобразующие механическую энергию в механическую энергию с помощью электромеханических устройств.
Теория взаимодействия электрических зарядов и магнитных полей изучена достаточно глубоко и изложена в теории электромагнитного поля. Ниже приводятся лишь некоторые примеры внешнего проявления этого взаимодействия.
1. Из курса физики известно, что в каждом проводнике, перемещающемся в магнитном поле, наводится электродвижущая сила, величина которой пропорциональна длине проводника, скорости движения, интенсивности магнитного поля. Направление электродвижущей силы зависит от направления перемещения проводника относительно магнитного поля.
Рис. 1.1
длиной
,
расположенный перпендикулярно силовым
линиям магнитного поля, перемещается
со скоростью
под углом к магнитным силовым линиям,
то величину электродвижущей силы можно
определить с помощью формулы
.
Если
вектор скорости перпендикулярен
проводнику (при
),
то
,
где
ЭДС проводника в вольтах;
индукция
поля в Теслах;
l длина проводника в метрах;
v скорость перемещения проводника в метрах в секунду;
угол между направлением вектора скорости и направлением магнитных силовых линий или вектором индукции магнитного поля.
Рис. 1.2
2. Теория электромагнитного поля указывает и на силовое взаимодействие проводника с током и магнитным полем.
Рис. 1.3
,
протекающему по проводнику.
Следовательно,
на проводник
с током
длиной
,
помещенный в равномерное магнитное
поле с индукцией
,
действует механическая сила
,
величина которой определяется уравнением
в том случае, если вектор индукции и
проводник перпендикулярны.
Вектор силы перпендикулярен проводнику и вектору индукции. Направление механической силы, действующей на проводник, принято определять по правилу левой руки (рис. 1.4): левую руку располагают так, чтобы силовые линии магнитного поля входили в ладонь, четыре пальца должны указывать направление тока в проводнике, тогда отогнутый большой палец укажет направление силы, действующей на проводник.
Рис. 1.4
Рис. 1.5
3. Чаще всего описанные выше взаимодействия проявляются одновременно. Рассмотрим случай перемещения проводника в магнитном поле под воздействием внешних сил со скоростью (рис. 1.5).
В
соответствии с описанным выше первым
примером взаимодействия магнитного
поля и проводника с током в проводнике,
движущемся в магнитном поле со скоростью
под углом
к направлению вектора индукции
,
возникнет ЭДС,
величина
которой определяется из уравнения
.
При
.
Если внешними проводниками подключить к активному проводнику ab резистор сопротивлением R, то в проводнике ab потечет ток i = e/R. Тогда этот проводник может рассматриваться как проводник с током, находящийся в магнитном поле. На него будет действовать механическая сила F, противоположная направлению перемещения проводника и являющаяся силой сопротивления внешнему воздействию, которое перемещает проводник со скоростью v. Сила F таким образом является силой механического сопротивления. Именно этот случай имеет место во всех электрических машинах, преобразующих электрическую энергию в механическую и механическую энергию в электрическую.
4. Следует напомнить о следующем свойстве упорядоченного движения электрических зарядов. Вокруг любого проводника с током существует магнитное поле, напряженность которого пропорциональна току (рис. 1.6).
Рис. 1.6
Ф
Рис. 1.7
используют правило правоходового винта.
Если винт вращать за головку так, чтобы
направление перемещения винта совпадало
с направлением тока, то направление
вращения головки винта покажет направление
силовых линий магнитного поля (см.
рис. 1.6). Если проводник имеет форму
витка (рис. 1.7), то ток, протекающий по
проводнику, создает магнитное поле,
магнитный поток которого пропорционален
току витка. Если магнитный поток индукции
магнитного поля сквозь поверхность,
ограниченную линией витка, изобразить
вектором, то направление этого вектора
будет таким, как показано на рис. 1.7.
Для определения направления этого вектора обычно используют то же правило правоходового винта.
Взаимодействием магнитного поля и свободных электрических зарядов объясняется и следующее явление, позволяющее понять принцип действия электрических машин. Речь идет о взаимодействии внешнего магнитного поля со свободными зарядами проводника в форме прямоугольной рамки или витка.
Е
сли
виток из проводника сцепляется с
магнитным полем, магнитный поток которого
через площадь витка изменяется во
времени, то в витке наводится ЭДС,
величина которой пропорциональна
скорости изменения магнитного потока
.
При этом ЭДС имеет такое направление,
что при замыкании контура в нем будет
протекать ток, собственное магнитное
поле которого будет препятствовать
изменению магнитного потока. В соответствии
с выбранным направлением магнитного
потока при его увеличении потенциал
клеммы a
витка будет
выше потенциала клеммы b.
При
уменьшении потока полярность ЭДС
изменится на противоположную.
Г л а в а 2
