Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дмитриев В.И. Прикладная теория информации.doc
Скачиваний:
638
Добавлен:
02.05.2014
Размер:
3.1 Mб
Скачать

Глава 6. Кодирование информации при передаче

ПО ДИСКРЕТНОМУ КАНАЛУ С ПОМЕХАМИ

§ 6.1. Основная теорема шеннона о кодировании

ДЛЯ КАНАЛА С ПОМЕХАМИ

Теория помехоустойчивого кодирования базируется на результатах исследований, проведенных Шенноном и сформулированных им в виде теоремы:

1. При любой производительности источника сообщений, меньшей, чем пропускная способность канала, существует такой способ кодирования, который позволяет обеспечить передачу всей информации, создаваемой источником сообщений, со сколь угодно малой вероятностью ошибки.

2. Не существует способа кодирования, позволяющего вести передачу информации со сколь угодно малой вероятностью ошибки, если производительность источника сообщений больше пропускной способности канала.

Хотя доказательство этой теоремы, предложенной Шенноном, в дальнейшем подвергалось более глубокому и строгому математическому представлению [34], идея его осталась неизменной. Доказывается только существование искомого способа кодирования, для чего находят среднюю вероятность ошибки по всем возможным способам кодирования и показывают, что она может быть сделана сколь угодно малой. При этом существует хотя бы один способ кодирования, для которого вероятность ошибки меньше средней.

Доказательство теоремы. Будем кодировать сообщения такой длительности Т, чтобы была справедлива теорема об асимптотической вероятности длинных последовательностей букв (см. § 4.2). Тогда при заданной производительности источника сообщений Ī(Ζ) кодированию подлежат только Ν(z) типичных последовательностей, причем:

Ориентируясь на равновероятное поступление в канал любого из m различных элементарных входных сигналов и отсутствие между ними статистической связи на входе канала, можно сформировать N(u) равновероятных последовательностей длительности Т, причем

Если условие существования способа кодирования выполняется, т. е.

то

и

Следовательно, существуетспособов кодирования, при которых множеству сообщенийN(z) случайным образом ставятся в соответствие различные подмножества разрешенных последовательностей элементарных сигналов из множества N(u).

При равновероятном выборе последовательностей элементарных сигналов из множества N(u) для любого подмножества разрешенных последовательностей вероятность ρ того, что конкретная последовательность будет отнесена к числу разрешенных,

В результате действия помех при получении на выходе канала сигналов v остается неопределенность относительно переданных последовательностей u. Она характеризуется условной энтропией Hv(U) и эквивалентна неопределенности выбора из последовательностей. Конкретная последовательность может быть идентифицирована со сколь угодно малой вероятностью ошибки, если средиNv(U) последовательностей она единственная разрешенная. Отсюда принципиальная необходимость введения избыточности в кодируемые последовательности для компенсации потерь информации в канале из-за действия помех.

Определим среднюю по всем возможным способам кодирования вероятность того, что ни одна изNv(U)-1 последовательностей не является разрешенной:

Так как (1 — р)<1, то увеличение степени на единицу приведет к неравенству

Правую часть неравенства разложим в ряд

Покажем, что члены ряда убывают по абсолютному значению. Для этого выразим ρ через Nv(U) [14].

Используя соотношение (6.3), запишем

или

гдеВыражение (6.4) теперь можно привести к виду

Согласно признаку Лейбница, остаток знакопеременного ряда с убывающими по абсолютному значению членами имеет тот же знак, что и первый отбрасываемый член, и меньше его по абсолютному значению. Следовательно, отбросив в разложении (6.5) все члены, содержащие ρ во второй и более высоких степенях, мы только усилим неравенство

Тогда для средней вероятности ошибочного приема типичной последовательности ошзапишем:

Вероятность ош пристремится к нулю. Принимая во внимание, что при неограниченном увеличении Т вероятность появления на входе канала нетипичной последовательности в соответствии с теоремой об асимптотической равновероятности также стремится к нулю, справедливо утверждение: при любом заданномη>0 можно выбрать такое T, при котором средняя вероятность ошибочной передачи информации по каналу будет меньше произвольно малого положительного числа.

Теорему можно считать доказанной, поскольку среди всего множества способов кодирования должен существовать хотя бы один, при котором вероятность ошибочного приема меньше средней.

С доказательством второй части рассматриваемой теоремы (обратного утверждения) можно ознакомиться в [36].

Обсуждение теоремы. В первую очередь отметим фундаментальность полученного результата. Теорема устанавливает теоретический предел возможной эффективности системы при достоверной передаче информации. Ею опровергнуто казавшееся интуитивно правильным представление о том, что достижение сколь угодно малой вероятности ошибки в случае передачи информации по каналу с помехами возможно лишь при введении бесконечно большой избыточности, т. е. при уменьшении скорости передачи до нуля. Из теоремы следует, что помехи в канале не накладывают ограничений на точность передачи. Ограничение накладывается только на скорость передачи, при которой может быть достигнута сколь угодно высокая достоверность передачи.

Теорема неконструктивна в том смысле, что в ней не затрагивается вопрос о путях построения кодов, обеспечивающих указанную идеальную передачу. Однако, обосновав принципиальную возможность такого кодирования, она мобилизовала усилия ученых на разработку конкретных кодов.

Следует отметить, что при любой конечной скорости передачи информации вплоть до пропускной способности сколь угодно малая вероятность ошибки, как следует из соотношения (6.10), достигается лишь при безграничном увеличении длительности кодируемых последовательностей знаков. Таким образом, безошибочная передача при наличии помех возможна лишь теоретически.

Обеспечение передачи информации с весьма малой вероятностью ошибки и достаточно высокой эффективностью возможно при кодировании чрезвычайно длинных последовательностей знаков. На практике степень достоверности и эффективности ограничивается двумя факторами: размерами и стоимостью аппаратуры кодирования и декодирования и временем задержки передаваемого сообщения. В настоящее время используются относительно простые методы кодирования, которые не реализуют возможностей, указанных теорией. Однако постоянно растущие требования в отношении достоверности передачи и успехи в технологии создания больших интегральных схем способствуют внедрению для указанных целей все более сложного оборудования.