Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дмитриев В.И. Прикладная теория информации.doc
Скачиваний:
638
Добавлен:
02.05.2014
Размер:
3.1 Mб
Скачать

§ 2.3. Способы восстановления непрерывного сигнала

Воспроизведение сигнала по выборкам можно производить как на основе ортогональных, так и неортогональных базисных функций, которые определяют тип аппроксимирующего полинома и принцип приближения: интерполяционный, экстраполяционный, комбинированный.

При неортогональных представлениях сигнала наиболее часто используются степенные алгебраические полиномы вида

или

где αj — действительные коэффициенты.

Если координаты сигнала представлены в виде разности выборок, то при его восстановлении, как правило, сначала проводят вычисление последовательности выборок и уже по ним строят аппроксимирующий полином u*(t).

Выбор системы базисных функций в составе аппроксимирующего полинома u*(t) во многом определяется требованием обеспечения простоты технической реализации аппаратных (программных) средств дискретизации и восстановления сигнала.

Если базисные функции выбраны так, что значения аппроксимирующего полинома совпадают со значениями выборок в моменты их отсчета, то такой полином называют интерполирующим.

С точки зрения сокращения числа отсчетов интерполяционные методы восстановления сигнала предпочтительнее, однако, для их реализации необходима задержка сигнала на интервал интерполяции, что в ряде случаев недопустимо. Поэтому в системах управления, работающих в реальном времени, используются экстра-поляционные методы, не требующие задержки сигнала при проведении операций определения значений выборок и восстановления сигнала.

При замене функции u(t) совокупностью отсчетов основная задача заключается в том, чтобы на интервале преобразования взять их не более чем требуется для восстановления исходного сигнала с заданной точностью в соответствии с выбранным критерием качества приближения.

Ограничение на число членов аппроксимирующего полинома (2.4) обычно не позволяет обеспечить заданную точность воспроизведения на всем интервале преобразования Т. Поэтому его разбивают на отрезки τj, называемые участками аппроксимации, и на каждом из них воспроизведение осуществляют аппроксимирующим полиномом (2.4), причем длительность участков аппроксимации может быть различной. В случае использования интерполяционного метода восстановления многочленом ненулевой степени на участке аппроксимации может размещаться несколько отсчетов.

§ 2.4. Критерии качества восстановления

При известной конечной совокупности координат сигнала и выбранном способе воспроизведения должна обеспечиваться заданная точность восстановления сигнала. Требования к точности восстановления диктуются потребителем информации. В зависимости от целевого назначения получаемой информации используются различные критерии точности приближения u*(t) к u(t).

В соответствии с критерием равномерного воспроизведения, называемым также критерием наибольшего отклонения, устанавливается абсолютное значение допустимой погрешности:

где m — максимальная погрешность приближения; Δi — участок аппроксимации; u(t) = u(t) — u*(t) — текущая погрешность приближения.

Если сигнал задан множеством возможных реализаций, то наибольшая допустимая погрешность устанавливается для всей совокупности реализацийu(t) и

u*(t):

Такой критерий применяется, например, в случаях, когда необходимо обеспечить возможность фиксации любых изменений исходного сигнала, включая кратковременные выбросы, в особенности, если они соответствуют аварийному режиму объекта.

Широко используется также критерий среднеквадратического приближения:

где Д — допустимая среднеквадратическая погрешность приближения; σ— среднеквадратическая погрешность приближения.

При множестве возможных реализаций сигнала величина σ усредняется в соответствии с их вероятностями.

В технической реализации неравномерная дискретизация на основе критерия среднеквадратического приближения сложнее, чем на базе критерия равномерного приближения.

Интегральный критерий приближения определяется соотношением

где Д - допустимая средняя погрешность приближения; ε — средняя погрешность приближения.

Применяется также вероятностный критерий, в соответствии с которым задается допустимый уровень рД величины ρ — вероятности того, что текущая погрешность приближения (t) не превысит некоторого определенного значения 0: