Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры_сапр(оба сем)ГОТОВЫЕ.doc
Скачиваний:
7
Добавлен:
13.09.2019
Размер:
3.1 Mб
Скачать

54.Дайте общую математическую формулировку игровых моделей

Игровые модели дают возможность изучать конфликтные ситуации, в которых каждая из конфликтующих сторон придерживается своих взглядов, и характер поведения каждой из них диктуется личными интересами. Примерами таких систем яв-ся отношения двух или нескольких производителей одинакового товара. Их поведение на рынке обусловлено интересами каждой из сторон. Как правило, эти отношения имеют характер конкурентной борьбы. Принятие решений является одним из важнейших аспектов различных областей жизни и трудовой деятельности людей. Качественные характеристики эффективного решения во многом опираются на количественный научно обоснованный подход, использующий серьезный математический аппарат. Описанная ситуация достаточно часто встречается на практике и ей нетрудно придать ту или иную экономическую интерпретацию. Так, вектор х можно отождествить с ресурсом, а функцию у = у(х) назвать производственной функцией, которая описывает наивыгоднейший для субъекта Б способ использования ресурса. Таким образом, субъекту Б выделяется такое количество ресурса, чтобы его деятельность наилуч­шим образом соответствовала целям субъекта А. Во многих задачах финансово-экономической сферы принятие решения осложняется наличием неопределенности, заключающейся в неполноте информации об окружающей эти задачи среде. Неопределенность такого типа порождается различными объективными причинами, как то: экономическая и финансовая политика государства, реформы в системе налогообложения, курсы валют, инфляция и т.п. Поэтому в задачах подобного рода принятие решения зависит от объективной действительности, называемой в соответствующей математической модели «природой». Сама же математическая модель называется «игрой с природой», а совокупность принципов и методов построения критериев для принятия оптимальных решений составляет раздел математики «Теория игр с природой», или, другими словами, «Теория статистических решений». Таким образом, в игре с природой участвуют два игрока: один из них, обозначим его через А, - лицо, принимающее решение; другой, обозначим его через П, - природа. Игрок А действует осознанно, стремясь принять наиболее выгодное для себя решение, а природа П, в отличие от него , принимает то или иное свое состояние неопределенным образом, не противодействуя злонамеренно игроку А, не преследуя конкретной цели и абсолютно безразлично к результату игры, т.е. природа П, являясь игроком в игре, не является ни противником, ни союзником игрока А.

Пусть игрок А обладает m возможными стратегиями А1,…,Аm, а природа П может находиться в одном из n своих состояний П1,…,Пn. Предполагается обычно, что игрок А в состоянии оценить результаты выбора им каждой из своих стратегий Аi, i=1,…,m, при каждом состоянии природы Пj, j=1,…,n, количественно выражающиеся действительными числами аij.

Эти числа, называемые выигрышами игрока А, можно записать в виде матрицы

р азмера m x n, строки которой соответствуют стратегиям игрока А, столбцы – состояниям природы П. Задача игрока А состоит в выборе оптимальной стратегии, обеспечивающей ему максимально возможный выигрыш. Поскольку стратегии Аi, i=1,…,m, выбираются игроком А осознанно, а не случайно, то их называют чистыми стратегиями, в отличие от смешанных стратегий, которые в данной статье не рассматриваются. Если в распоряжении игрока А всего одна стратегия А1, т.е. m=1, то проблема выбора им оптимальной стратегии отпадает. Поэтому в дальнейшем целесообразно считать m³2. Если природа П может пребывать только в одном состоянии П1, т.е. n=1, то проблема выбора игроком А оптимальной стратегии превращается в тривиальную: игрок А должен выбрать стратегию Аk такую, что выигрыши аk1³ai1, i=1,…,m. Поэтому будем предполагать , что n³2. Если какая-нибудь k-я строка матрицы А доминируется (в частности, дублируется) другой s-й строкой, т.е. (аk1,…,akn)£(as1,…asn) (в частности, (аk1,…,akn)=(as1,…asn)), то доминируемую (в частности, дублируемую) k-ю строку можно удалить, как строку, определяющую стратегию Аk, заведомо не лучшую стратегии Аs. В результате матрица А упрощается за счет уменьшения числа строк. Таким образом, в дальнейшем будем считать, что матрица А не содержит доминируемых (в частности, дублируемых строк).

Если известны вероятности состояний природы q1=p(П1),…,qn=p(Пn),

которые, очевидно, должны удовлетворять условиям:

(1)

(поскольку события, состоящие в том, что природа П находится в одном из своих состояний П1,…,Пn, несовместны и составляют полную группу), то говорят о принятии решения «в условиях риска». Если же вероятности, с которыми природа П может находиться в том или ином из своих состояний, неизвестны и отсутствует возможность получения о них какой либо статистической информации, то говорят о принятии решения  «в условиях неопределенности». Понятие оптимальности стратегии может определяться различными соображениями, составляющими содержание соответствующих критериев оптимальности.

1. Общая методика формирования критериев

Суть предлагаемой методики формирования критериев заключается в реализации следующих пунктов.

1) Из выигрышей аij, i=1,…,m; j=1,…,n, игрока А составляем матрицу А, предполагая, что она удовлетворяет указанным выше условиям: m³2, n³2 и она не содержит доминируемых (в частности, дублируемых) строк.

Выигрыши аij игрока А, представленные в виде матрицы А, дают возможность лучшего обозрения результатов выбора стратегий Аi, i=1,…,m, игроком А при каждом состоянии природы Пj, j=1,…,n.

2) Фиксируем распределение удовлетворяющих условию (1) вероятностей qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…n, разумеется, если они известны. Таким образом, пункт 2 участвует в методике формирования критерия в случае принятия решения в условиях риска.

3) На основании пунктов 1 и 2 выбираем натуральное число l, 1£l£n, и определенным образом строим матрицу

В=

j

Bi

1

2

l

B1

b11

b12

b1l

B2

b21

b22

b2l

Bm

bm1

bm2

bml

размера m x l. Построение конкретной матрицы В порождается содержательной идеей формируемого критерия.

4) Выбираем l из чисел l1,…, ll, удовлетворяющих условиям

(2)

Назовем их коэффициентами формируемого критерия. Они призваны играть роль количественных оценок некоторых субъективных проявлений игрока А (лица, принимающего решение), а именно степени доверия к распределению вероятностей состояний природы и степени его пессимизма (оптимизма) при принятии решений.

5) Используя матрицу В и коэффициенты l1,…, ll, каждой стратегии Аi, i=1,…,m, игрока А поставим в соответствие число

(3)

которое назовем показателем эффективности Аi.

Таким образом, показатель эффективности Gi стратегии Аi, i=1,…,m, учитывает определенным образом выигрыши игрока А при этой стратегии, вероятности состояний природы (если они известны) и его субъективные проявления при выборе наиболее эффективной стратегии.

6) Определим цену игры G в чистых стратегиях как максимальный показатель эффективности стратегий Аi, i=1,…,m, т.е.

(4)

7) Определим оптимальную стратегию.

Оптимальной стратегией назовем стратегию Аk с максимальным показателем эффективности, другими словами, - стратегию, показатель эффективности Gk которой совпадает с ценой игры G:

Gk= G.

(5)

Понятно, что такое определение  оптимальной стратегии не влечет ее единственности.

Отметим, что по логике этого пункта игрок А, выбирая оптимальную стратегию, максимизирует показатель Gi (см. (5)). Это обстоятельство оправдывает то, что этот показатель мы назвали (в пункте 5) показателем эффективности.

55.Опишите минимаксный метод нахождения оптимальной стратегии для антагонистических игр

Антагонистические игры (матем.), понятие теории игр (см. Игр теория). А. и. — игры, в которых участвуют два игрока (обычно обозначаемые I и II) с противоположными интересами. Для А. и. характерно, что выигрыш одного игрока равен проигрышу другого и наоборот, поэтому совместные действия игроков, их переговоры и соглашения лишены смысла. Большинство азартных и спортивных игр с двумя участниками (командами) можно рассматривать как А. и. Принятие решений в условиях неопределённости, в том числе принятие статистических решений, также можно интерпретировать как А. и. Определяются А. и. заданием множеств стратегий игроков и выигрышей игрока I в каждой ситуации, состоящей в выборе игроками своих стратегий. Таким образом, формально А. и. есть тройка ‹А, В, Н›, в которой А и В — множества стратегий игроков, а Н (а, b) — вещественная функция (функция выигрыша) от пар (а, b), где а A, b В. Игрок I, выбирая а, стремится максимизировать Н(а, b), а игрок II, выбирая b, минимизировать Н (а, b). А. и. с конечными множествами стратегий игроков называются матричными играми.

  Основой целесообразного поведения игроков в А. и. считается принцип минимакса. Следуя ему, I гарантирует себе выигрыш

  точно так же II может не дать I больше, чем

  Если эти «минимаксы» равны, то их общее значение называется значением игры, а стратегии, на которых достигаются внешние экстремумы, — оптимальными стратегиями игроков. Если «минимаксы» различны, то игрокам следует применять смешанные стратегии, т. е. выбирать свои первоначальные («чистые») стратегии случайным образом с определёнными вероятностями. В этом случае значение функции выигрыша становится случайной величиной, а её математическое ожидание принимается за выигрыш игрока I (соответственно, за проигрыш II). В играх против природы оптимальную смешанную стратегию природы можно принимать как наименее благоприятное априорное распределение вероятностей её состояний. В А. и. игроки, используя свои оптимальные стратегии, ожидают получения (например, в среднем, если игра повторяется многократно) вполне определённых выигрышей. На этом основан рекуррентный подход к динамическим играм в тех случаях, когда они сводятся к последовательностям А. и., решения которых можно найти непосредственно (например, если эти А. и. яв-ся матричными). А. и. составляют класс игр, в которых принципиальные основы поведения игроков достаточно ясны. Поэтому всякий анализ более общих игр при помощи А. и. полезен для теории. Пример такого анализа даёт классическая кооперативная теория игр, изучающая общие бескоалиционные игры через системы А. и. каждой из коалиций игроков против коалиции, состоящей из всех остальных игроков.

Матричные игры, понятие игр теории. М. и. — игры, в которых участвуют два игрока (I и II) с противоположными интересами, причём каждый игрок имеет конечное число чистых стратегий. Если игрок I имеет m стратегий, а игрок II — n стратегий, то игра может быть задана (mn)-maтрицей А = ||aij||, где aij есть выигрыш игрока I, если он выберет стратегию i (i  = -1, ..., m), а игрок II — стратегию j (j = 1, ..., n). Следуя общим принципам поведения в антагонистических играх (частным случаем которых яв-ся М. и.), игрок I стремится выбрать такую стратегию i0, на которой достигается   ;  игрок II стремится выбрать стратегию jo, на которой достигается   ;

  Если 1 = 2, то пара (i0, j0) составляет седловую точку игры, то есть выполняется двойное неравенство

  ; i = 1, …, m; j = 1, …, n.

Число  называется значением игры; стратегии i0, j0 называются оптимальным и чистыми стратегиями игроков I и II соответственно. Если 1  2, то всегда 1 < 2; в этом случае в игре седловой точки нет, а оптимальные стратегии игроков следует искать среди их смешанных стратегий (то есть вероятностных распределений на множестве чистых стратегий). В этом случае игроки оперируют уже с математическими ожиданиями выигрышей.

  Основная теорема теории М. и. (теорема Неймана о минимаксе) утверждает, что в любой М. и. существуют оптимальные смешанные стратегии х*, у*, на которых достигаемые «минимаксы» равны (общее их значение есть значение игры). Например, игра с матрицей  имеет седловую точку при i0 = 2, j0 = 1, а значение игры равно 2; игра с матрицей  не имеет седловой точки. Для неё оптимальные смешанные стратегии суть х* = (3/4, 1/4), y* = (1/2, 1/2); значение игры равно 1/2.

  Для фактического нахождения оптимальных смешанных стратегий чаще всего используют возможность сведения М. и. к задачам линейного программирования. Можно использовать так называемый итеративный метод Брауна — Робинсон, состоящий в последовательном фиктивном «разыгрывании» данной игры с выбором игроками в каждой данной партии своих чистых стратегий, наилучших против накопленных к этому моменту стратегий оппонента. Игры, в которых один из игроков имеет только две стратегии, просто решить графически.

  М. и. могут служить математическими моделями многих простейших конфликтных ситуаций из области экономики, математической статистики, военного дела, биологии. Нередко в качестве одного из игроков рассматривают «природу», под которой понимается вся совокупность внешних обстоятельств, неизвестных принимающему решения лицу (другому игроку).

57.Опишите метод Гермейера нахождения оптимальной стратегии

Критерий Гермейера [7].

1) Пусть матрица А яв-ся матрицей выигрышей игрока А.

2) Даны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Т.о. игрок А находится в ситуации принятия решений в условиях риска

3) Положим l=1 и

(15)

Таким образом, матрица В представляет собой вектор столбец

В=

размера m x 1.

4) Полагаем l1=1. Условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по критерию Гермейера определяем по формуле (3) с учетом (15) и того, что l1=1:

(16)

Если игрок А придерживается стратегии Аi, то вероятность выигрыша aij при этой стратегии и при состоянии природы Пj равна, очевидно, вероятности qj этого состояния природы. Поэтому формула (16) показывает, что показатель эффективности стратегии Аi по критерию Гермейера есть минимальный выигрыш при этой стратегии с учетом его вероятности.

6) Цена игры по критерию Гермейера определяется по формуле (4):

7) Оптимальной стратегией по критерию Гермейера считается стратегия Аk с наибольшим показателем эффективности:

Gk= G

Заметим, что критерий Гермейера можно интерпретировать как критерий Вальда, применимый к игре с матрицей

Критерий Гермейера так же, как и критерий Вальда яв-ся критерием крайнего пессимизма игрока А, но, в отличие от критерия Вальда, игрок А, принимая решение с максимальной осмотрительностью, учитывает вероятности состояний природы.

В случае равномерного распределения вероятностей состояний природы: qj=n-1, j=1,…,n, показатель эффективности стратегии Аi, в силу формулы (16), будет равен Gi=n-1aij и , следовательно, критерий Гермейера эквивалентен критерию Вальда, т.е. стратегия, оптимальная по критерию Гермейера, оптимальна и по критерию Вальда, и наоборот.