Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры_сапр(оба сем)ГОТОВЫЕ.doc
Скачиваний:
7
Добавлен:
13.09.2019
Размер:
3.1 Mб
Скачать

46.Дайте определение и приведите основные соотношения для моделирования замкнутых систем массового обслуживания

Основное отличие разомкнутой системы от замкнутой состоит в том, что в разомкнутой системе интенсивность поступления требований - характеристика источника требований. В замкнутой системе потенциальное число требований яв-ся величиной постоянной. После обслу­живания требования оно возвращается в источник. В замкнутой систе­ме интенсивность поступления требований Х- характеристика конкретного объекта, поступающего в систему.

Например, обслуживается машинный парк, состоящий из N машин, бригадой R механиков (N > R), причем каждая машина может обслуживаться только одним механиком. Здесь машины яв-ся источниками требований (заявок на обслуживание), а механики - обслуживающими каналами. Неисправная машина после обслуживания используется по своему прямому назначению и становится потенциальным источником возникновения требований на обслуживание. Очевидно, что интенсивность λ зависит от того, сколько машин в данный момент находится в эксплуатации (N - k) и сколько машин обслуживается или стоит в очереди, ожидая обслуживания (k).

В рассматриваемой модели емкость источника требований следует считать ограниченной. Входящий поток требований исходит из ограниченного числа эксплуатируемых машин (N - k), которые в случайные моменты времени выходят из строя и требуют обслуживания. При этом каждая машина из (N - k) находится в эксплуатации и генерирует пуассоновский поток требований с интенсивностью X независимо от других объектов; общий (суммарный) входящий поток имеет интенсивность (N-k)*λ. Требование, поступившее в систему в момент, когда свободен хотя бы один канал, немедленно идет на обслуживание. Если требование застает все каналы занятыми обслуживанием других требований, то оно не покидает систему, а становится в очередь и ждет, пока один из каналов не станет свободным.

Таким образом, в замкнутой системе массового обслуживания входящий поток требований формируется из выходящего.

Состояние Sk системы характеризуется общим числом требований, находящихся на обслуживании и в очереди, равным k. Для рассматриваемой замкнутой системы, очевидно, k = 0, 1, 2, ... , N. При этом если система находится в состоянии Sk , то число объектов, находящихся в эксплуатации, равно (N - k).

Если λ - интенсивность потока требований в расчете на одну машину, то:

; (5.41)

   

Система алгебраических уравнений, описывающих работу замкнутой СМО в стационарном режиме, выглядит следующим образом:

(5.42)

 Решая данную систему, находим вероятность k-гo состояния:

(5.43)

 Величина P0 определяется из условия нормирования полученных результатов по формулам (2.2.41) для Pk , k = 0, 1, 2, ... , N. Определим следующие вероятностные характеристики системы:

среднее число требований в очереди на обслуживание:

; (5.44)

среднее число требований, находящихся в системе (на обслуживании и в очереди)

(5.45)

среднее число механиков (каналов), «простаивающих» из-за отсутствия работы

; (5.46)

коэффициент простоя обслуживаемого объекта (машины) в очереди

; (5.47) 

коэффициент использования объектов (машин)

; (5.48)

коэффициент простоя обслуживающих каналов (механиков)

; (5.49)

среднее время ожидания обслуживания (время ожидания обслуживания в очереди)

. (5.50)

48.Проанализируйте процесс построения модели системы

49.Дайте определение и опишите сущность имитационного моделирования систем

Особым видом моделей яв-ся имитационные модели. Имитационное моделирование проводится в тех случаях, когда исследователь имеет дело с такими математическими моделями, которые не позволяют заранее вычислить или предсказать результат. В этом случае для предсказания поведения реальной сложной системы необходим эксперимент, имитация на модели при заданных исходных параметрах. Имитация представляет собой численный метод проведения на ЭВМ экспериментов с математическими моделями, описывающими поведение сложной системы в течение заданного или формируемого периода времени. Поведение компонентов сложной системы и их взаимодействие в имитационной модели чаще всего описывается набором алгоритмов, реализуемых на некотором языке моделирования. Термин «имитационная модель» используют в том случае, когда речь идет о проведении численных расчетов и в частности о получении статистической выборки на математической модели, например, для оценки вероятностных характеристик некоторых выходных параметров. Моделирование на системном уровне применяется в системном анализе для проведения расчетов характеристик будущей системы. При построении имитационной модели исследователя, прежде всего, интересует возможность вычисления некоторого функционала, заданного на множестве реализаций процесса функционирования изучаемой системы. Наиболее важным для исследователя функционалом яв-ся показатель эффективности системы. Имитируя различные реальные ситуации на модели, исследователь получает возможность решения таких задач как оценка эффективности тех или иных принципов управления системой, сравнение вариантов структурных схем, определение степени влияния изменений параметров системы и начальных условий на показатель эффективности системы. Примерами расчетов на имитационных моделях также могут служить вычисления характеристик производительности, надежности, качества функционирования и т.п., которые необходимо определить как функции внутренних и внешних параметров системы.

Ответственный этап создания имитационной модели представляет собой этап составления формального описания объекта моделирования сложной системы. Цель этапа - получение исследователем формального представления алгоритмов поведения компонентов сложной системы и отражение вопросов взаимодействия между собой этих компонентов. При составлении формального описания модели исследователь использует тот или иной язык формализации. В зависимости от сложности объекта моделирования и внешней среды могут использоваться три вида формализации: аппроксимация явлений функциональными зависимостями, алгоритмическое описание происходящих в системе процессов, комбинированное представление в виде формул и алгоритмических записей.

Сложность системы и вероятностный характер процессов, происходящих в объекте исследования, свидетельствуют о том, что для определения выходных характеристик системы необходимо использовать стохастические модели. Вероятностный характер процессов, происходящих в сложных системах, приводит к невозможности аппроксимации явлений функциональными зависимостями. Доминирующим методом при моделировании сложных систем яв-ся способ алгоритмического описания происходящих в системе процессов.

Отметим еще одну особенность, которую необходимо учитывать при моделировании процесса функционирования сложной системы. В социотехнических системах люди решают часть задач из общей последовательности задач, решаемых системой, например, задачи управления, принятия решения и т.п. Следовательно, они принципиально не устранимы из системы и должны быть представлены в модели системы как ее элементы. Однако учет так называемого «человеческого фактора» имеет принципиальные сложности. При выполнении человеком производственных операций требуется учитывать квалификацию конкретного исполнителя, его опыт и стаж работы. Необходимо также иметь в виду, что на качество выполняемых процедур могут оказывать влияние состояние его здоровья, эмоционально-психологический настрой и прочие факторы, которые практически не удается формализовать при составлении модели. Поэтому в моделях принимают определенного рода допущения, приводящие к упрощению модели, к решению задачи «в среднем», т.е. задают некоторые средние характеристики выполнения человеком своих функций и при данных значениях проводят расчеты модели. Для того, чтобы учесть возможные отклонения в процессе выполнения операций различными исполнителями, необходимо проводить анализ чувствительности модели

52.Опишите основные этапы процесса формализации и алгоритмизации процесса функционирования систем

Этапы моделирования систем. Рассмотрим основные этапы моде­лирования системы S, к числу которых относятся: построение кон­цептуальной модели системы и ее формализация; алгоритмизация модели системы и ее машинная реализация; получение и интерпре­тация результатов моделирования системы.

Рис. 8.1. Взаимосвязь этапов моделирования систем

Взаимосвязь перечисленных этапов моделирования систем и их составляющих (подэтапов) может быть представлена в виде сетевого графика, показанного на рис. 8.1. Перечислим эти подэтапы:

1.1 — постановка задачи машинного моделирования системы; 1.2 — анализ задачи моделирования системы; 1.3 — определение требований к исходной информации об объекте моделирования и организация ее сбора; 1.4 — выдвижение гипотез и принятие предположений; 1.5 — определение параметров и переменных модели; 1.6 — установление основного содержания модели; 1.7 —обоснование критериев оценки эффективности системы; 1.8 — определение процедур аппроксимации; 1.9 — описание концептуальной модели системы; 1.10 — проверка достоверности концептуальной модели; 1.11 — составление технической документации по первому этапу; 2.1 — построение логической схемы модели; 2.2 — получение математических соотношений; 2.3 — проверка достоверности модели системы; 2.4 — выбор инструментальных средств для моделирования; 2.5 — составление плана выполнения работ по программированию; 2.6 —спецификация и построение схемы программы; 2.7 — верификация и проверка достоверности схемы программы; 2.8 — проведение программирования модели; 2.9 — проверка достоверности программы; 2.10 — составление технической документации по второму этапу; 3.1 — планирование машинного эксперимента с моделью системы; 3.2 — определение требований к вычислительным средствам; 3.3 — проведение рабочих расчетов; 3.4 — анализ результатов моделирования системы; 3.5 — представление результатов моделирования; 3.6 — интерпретация результатов моделирования; 3.7 — подведение итогов моделирования и выдача рекомендаций; 3.8 — составление технической документации по третьему этапу.

Таким образом, процесс моделирования системы S сводится к выполнению перечисленных подэтапов, сгруппированных в виде трех этапов. На этапе построения концептуальной модели Мт и ее формализации проводится исследование моделируемого объекта с точки зрения выделения основных составляющих процесса его функционирования, определяются необходимые аппроксимации и получается обобщенная схема модели системы S, которая преобразуется в машинную модель Мм на втором этапе моделирования путем последовательной алгоритмизации и программирования модели. Последний третий этап моделирования системы сводится к проведению согласно полученному плану рабочих расчетов на ЭВМ с использованием выбранных программно-технических средств, получению и интерпретации результатов моделирования системы S с учетом воздействия внешней среды Е. Очевидно, что при построении модели и ее машинной реализации при получении новой информации возможен пересмотр ранее принятых решений, т. е. процесс моделирования является итерационным. Рассмотрим содержание каждого из этапов более подробно.