Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры_сапр(оба сем)ГОТОВЫЕ.doc
Скачиваний:
7
Добавлен:
13.09.2019
Размер:
3.1 Mб
Скачать

32.Дайте общую математическую формулировку задач нелинейного программирования

Нелинейное программирование - раздел теории оптимизации (теории экстремальных задач), посвященный исследованию и решению задач минимизации (максимизации), в которых целевая функция и ограничения не яв-ся линейными. К нелинейному программированию относят квадратичное , дробное, выпуклое , дискретное , целочисленное и геометрическое программирование.

В общем виде задачу нелинейного программирования можно сформулировать так:

F (х)min (max) (1) при условии g(x)≤ 0, (2)

где х - вектор искомых переменных; F (х) - целевая числовая функция; g(x) - вектор-функция системы ограничений.

При этом могут быть разные случаи: целевая функция - нелинейная, а ограничения - линейны; целевая функция - линейная, а ограничения (хотя бы одно из них) - нелинейные; целевая функция и ограничения нелинейные. Задачи условной оптимизации нелинейного программирования бывают двух типов: когда в ограничениях (2) имеют место а) знаки равенства б) знаки неравенства.

Решение задачи нелинейного программирования (поиск глобального минимума или максимума) состоит в отыскании таких значений переменных, подчиненных системе ограничений, при которых достигает минимума или максимума данная целевая функция.

При решении некоторых нелинейных задач иногда удается использовать линейную теорию. Для этого вводят допущение, что на том или ином участке целевая функция возрастает или убывает пропорционально изменению переменных. Такой подход называется методом кусочно-линейных приближений.

Нелинейные задачи с ограничениями в форме равенств нередко решаются с помощью введения функции Лагранжа.

Функция Лагранжа для функции имеет вид: , где - вектор множителей Лагранжа.

Среди большого числа вычислительных алгоритмов нелинейного программирования значительное место занимают различные варианты градиентных методов (метод проекции градиента, метод условного градиента и т. п.), методы штрафных функций, методы барьерных функций, метод модифицированных функций Лагранжа и др.

Универсального метода, позволяющего находить наиболее эффективным способом решение любой нелинейной задачи, не существует. Поэтому для каждой конкретной задачи, учитывая ее специфику, подбирают тот или иной наиболее подходящий метод (и алгоритм) решения.

28.Дайте общую формулировку задач дискретного программирования

Постановка задачи дискретного программирования. Многие задачи системного анализа, такие как распределение ресурсов, задачи сетевого планирования и управления, календарного планирования, описываются математическими моделями дискретного программирования.

Рассмотрим общую задачу максимизации.

Найти при условиях

(10.12)

где D - некоторое множество R(n)

Если множество D яв-ся конечным или счетным, то условие (10.12) - это условие дискретности, и данная задача яв-ся задачей дискретного программирования (ЗДП). Чаще всего условие дискретности разделено по отдельным переменным следующим образом:

где D - конечное (или счетное) множество.

Если вводится ограничение х; - целые числа (j=l,2,..., n), то приходят к задачам целочисленного программирования (ЦП), которое яв-ся частным случаем дискретного программирования.

В задачах дискретного программирования область допустимых решений яв-ся невыпуклой и несвязной. Поэтому отыскание решения таких задач сопряжено со значительными трудностями. В частности, невозможно применение стандартных приемов, используемых при замене дискретной задачи ее непрерывным аналогом, состоящих в дальнейшем округлении найденного решения до ближайшего целочисленного. Например, рассмотрим следующую ЗЛП:

найти max (x1-3x2 +3х3) при условиях

где х1, х2, х3 ≥ 0, xj - целые числа (j = 1,2, 3). Игнорируя условие целочисленности, находим оптимальный план симплекс-методом:

x1опт=1/2, x2=0,…,x2опт=9/2.

Проверка показывает, что никакое округление компонент этого плана не дает допустимого решения, удовлетворяющего ограничениям этой задачи. Искомое целочисленное решение задачи x1пт =2, x2опт=0, x3опт=5.

Таким образом, для решения задачи дискретного программирования (ЗДП) необходимы специальные методы. Методы решения ЗДП по принципу подхода к проблеме делят на три группы: 1) методы отсечения или отсекающих плоскостей; 2) метод ветвей и границ; 3) методы случайного поиска и эвристические методы.

33.Приведите содержательные постановки задач, приводящие к моделям нелинейного программирования

Постановки задач нелинейного программирования. Задачи нелинейного программирования на практике возникают довольно часто, например, когда затраты растут непропорционально количеству закупленных или произведенных товаров. Хорошо известно, что чем больше партия закупаемого товара, тем меньше стоимость единицы продукта. Любому покупателю знакомо понятие розничных и оптовых цен. Рассмотрим конкретный пример, иллюстрирующий данную ситуацию.

Планирование производства продукции. На действующем предприятии планируется организовать выпуск новых видов продукции. Для организации производства необходимо приобретать сырье, стоимость которого колеблется в зависимости от спроса. Цены на готовую продукцию предприятия предполагаются стабильными.

Итак, необходимо провести исследования о производстве двух видов изделий, для которых планируется приобретение сырья, цена которого зависит от объема закупаемой партии и спроса на рынке на сырье данного типа. Цены же на продукцию предприятия утверждены с учетом реальной обстановки и должны сохраняться неизменными. Объемы производства предстоит определить исходя из анализа сырьевой проблемы и ограниченности производственных ресурсов.

Пусть х1, х2 - объемы производимой продукции 1-го и 2-го видов, с1, с2 - цена единицы продукции 1-го и 2-го видов соответственно. Затраты на приобретение и доставку сырья представляют собой нелинейную функцию, зависящую от объема закупаемого товара, f1(x1), f2(x2). Таким образом, экономическая рентабельность планируемых мероприятий оценивается формулой (3)

Предприятие для производства новых видов продукции может выделить лишь часть своих мощностей, что накладывает дополнительные ограничения на максимальный объем выпуска новых видов изделий. Устанавливаются также лимиты на стоимость основных фондов (эксплуатация зданий, снабжение электроэнергией, амортизационные отчисления) в объеме b1, и стоимость производственных процессов (вспомогательные материалы, заработная плата, накладные расходы и др.) в объеме b2 Известно, что изготовление единицы продукции первого вида требует а11 затрат из основных фондов и а12 трудовых затрат, а единицы продукции второго вида затрат в размере а21 и а22 соответственно. Учет этих факторов приводит к условиям

(4)

Теперь можно сформулировать задачу: определить такие х1, х2, которые бы обеспечивали максимум функционала (5)

при ограничениях (6) x1 ,x2≤0.

Таким образом сформулирована задача, в которой целевая функция яв-ся нелинейной.