
- •Глава 1
- •§ 1.1. Радиоприемное устройство как составная часть радиосистемы
- •§ 1.2. Структурные схемы радиоприемников
- •§ 1.3. Основные характеристики радиоприемников
- •Глава 2
- •§ 2.1. Сигналы на входе приемника, прошедшие однолучевои канал
- •§ 2.2. Сигналы на входе приемника, отраженные пространственно-распределенными рассеивателя ми
- •§ 2.3. Внутренние шумы приемников
- •§ 2.4. Внешние шумы
- •§ 2.5. Коэффициент шума и шумовая температура
- •§ 2.6. Расчет реальной чувствительности радиоприемного устройства
- •Глава 3
- •§ 3.1. Входные цепи
- •1. Коэффициент передачи по напряжению
- •§ 3.2. Транзисторные усилители радиочастоты
- •§ 3.3. Регенеративные мшу диапазона свч
- •§ 3.4. Полупроводниковые параметрические усилители
- •§ 3.5. Усилители на туннельных диодах
- •Глава 4
- •§ 4.1. Основные показатели и типы упч
- •§ 4.2. Упч с распределенной избирательностью
- •§ 4.3. Упч с сосредоточенной избирательностью
- •§ 4.4. Упч с дискретными и цифровыми фильтрами
- •Глава 5
- •§ 5.1. Общая теория преобразования частоты
- •§ 5.2. Побочные каналы приема
- •§ 5.3. Преобразователи частоты на полевых и биполярных транзисторах
- •§ 5.4. Преобразователи частоты на интегральных микросхемах
- •§ 5.5. Диодные преобразователи частоты
- •§ 5.6. Гетеродины
- •Глава 6
- •§ 6.1. Параметры
- •§ 6.2. Принципы построения и функциональные схемы свч-модулей
- •§ 6.3. Гибридно-интегральные свч-модули
- •Глава 7
- •§ 7.1. Задачи, решаемые детекторами сигналов. Основные характеристики детекторов
- •§ 7.2. Амплитудные детекторы
- •§ 7.3. Ограничители амплитуды
- •§ 7.4. Фазовые детекторы
- •§ 7.5. Частотные детекторы
- •Глава 8
- •§ 8.1. Принципы автоматической регулировки усиления. Разновидности систем ару
- •§ 8.2. Элементы систем ару
- •§ 8.3. Работа ару
- •§ 8.4. Динамика систем ару
- •Глава 9
- •§ 9.1. Принципы автоматической подстройки частоты. Разновидности систем апч
- •§ 9.2. Элементы систем апч
- •§ 9.3. Переходные процессы
- •§ 9.4. Устойчивость систем апч
- •Глава 10
- •§ 10.1. Области применения и принципы работы системы фапч
- •§ 10.2. Дифференциальное уравнение
- •§ 10.3. Статистические характеристики системы фапч и ее модели
- •§ 10.4. Использование
- •§ 10.5. Цифровые системы фапч
- •Глава 11
- •§ 11.1. Радиоприем
- •§ 11.2. Оптимальный радиоприем в аддитивном гауссовом белом шуме
- •§ 11.3. Оптимальная нелинейная фильтрация сообщений
- •Глава 12
- •§ 12.1. Структурные схемы радиоприемников импульсных сигналов
- •§ 12.2. Особенности линейного тракта радиоприемника импульсного сигнала
- •§ 12.3. Прохождение импульсного сигнала через линейную часть радиоприемника
- •§ 12.4. Согласованные
- •§ 12.5. Согласованные фильтры и конвольверы на пав
- •Глава 13
- •§ 13.1. Особенности иас
- •§ 13.2. Структурная схема приемника иас
- •§ 13.3. Квазикогерентные демодуляторы квантованных вим-и чим-смгналов
- •§ 13.4. Квазикогерентный приемник ким-сигналов
- •§ 14.1. Структурная схема приемника дискретных сигналов
- •§ 14.2. Квазикогерентные демодуляторы двоично-манипулированных сигналов
- •§ 14.3. Некогерентные демодуляторы двоично-маиипулироваииых сигналов
- •Глава 15
- •§ 15.1. Общие сведения о приеме непрерывных сигналов и сообщениях
- •§ 15.3. Прохождение ам-сигнала через линейную часть приемника
- •§ 15.4. Приемники чм-и фм-сигналов
- •9Ш(0 y(t)iAlt.
- •§ 15.5. Прохождение чм (фм)-сигнал а через линейную часть приемника
- •§ 15.6. Приемники чм-сигнала с обратным управлением
- •§ 15.7. Приемники однополосных сигналов
- •Глава 16
- •§ 16.1. Особенности приема сигналов в оптическом диапазоне
- •§ 16.2. Приемные устройства
- •§ 16.3. Приемные устройства
- •Глава 17
- •§ 17.1. Задачи и организация математического моделирования
- •§ 17.2. Методы математического моделирования (методы составления математических моделей)
- •§ 17.3. Методы составления цифровых моделей (методы оцифровывания математических моделей)
- •§ 17.4. Математическое моделирование рпу методом несущей
- •§ 17.5. Математическое моделирование рпу методом комплексной огибающей
- •§ 17.6. Математическое моделирование рпу методом статистических эквивалентов
- •§ 17.7. Математическое моделирование рпу методом информационного параметра
- •17. Кривицкий б. X., Салтыков е. Н.
- •29. Тихонов в. И., Кульман н. К.
§ 5.2. Побочные каналы приема
Преобразователь частоты обр зует колебания промежуточной ча тоты в результате взаимодействь каждой гармоники колебания г теродина с сигналами, частоты кот рых отличаются от частоты соотве ствующей гармоники гетеродина на в личину соп. Таким образом, othoci тельно каждой гармоники гетерод! на возникает два канала прием; Кроме этого, по отношению к сигш лу, имеющему частоту, равную пр( межуточной, преобразователь веде себя как усилитель, модулируемы гетеродинным напряжением.
Из изложенного ясно, что сущее вует множество сигналов, преобрг зуемых в колебания одной и той ж промежуточной частоты. Из этог множества только один сигнал явл? ется полезным, остальные соответсп вуют побочным каналам приема.
В (5.8) было принято, что полег ный сигнал имеет частоту юс = /шг -—«о,,. С тем же успехом можно бы ло бы принять сос = пыг + сош О),, = сос — я<ог. При этом все иоследук: щие соотношения остались бы ней
менными. Таким образом, в нашем случае полезному каналу сигнала с частотой о)с соответствует побочный «зеркальный » канал с частотой сос. 3 = = (ос + 2соп. Все внутренние параметры преобразователя частоты и коэффициент преобразования для канала сигнала и зеркального канала одинаковы (Кп.з — ■—SnZ„,a). ^о-этому зеркальный канал является одним из наиболее опасных побочных каналов приема.
Если частота сигнала равна промежуточной частоте, то из соотношения (5.7) легко видеть, что
(5.22)
или с учетом равенства Un = —/nZ„
(5.23)
Канал приема с частотой сосп = = соп называется каналом прямого прохождения. Очевидно, коэффициент передачи канала прямого прохождения
(5.24)
Так как часто S„ > S„, то Кпп ^ > Ки.
Поэтому канал прямого прохождения является столь же опасным, как и зеркальный канал. Однако при оценке опасности указанных паразитных каналов следует учитывать, что канал прямого прохождения для приемника с выбранной частотой соп •фиксирован, а зеркальный канал при перестройке по частоте следует за
каналом сигнала. Поэтому вероятность воздействия помехи по зеркальному каналу выше, чем по каналу прямого прохождения.
Все возможные каналы приема могут быть определены из уравнения
(5.25)
которое графически иллюстрируется рис. 5.3. Видно, что каждой гармонике колебания гетеродина соответствуют два канала приема и, кроме того, существует канал прямого прохождения, не связанный с процессом преобразования частоты. На рис. 5.3 ось ординат не образмерена, однако с учетом коэффициентов передачи (преобразования) для каждого из побочных каналов приема и канала сигнала подобный рисунок можно рассматривать как частотную характеристику преобразователя частоты при изменении частоты входного сигнала в широких пределах.
Борьба с побочными каналами приема возможна в цепях, включаемых до преобразователя частоты — во входной цепи и в УРЧ, за счет частотной избирательности. Ослабление зеркального канала входной цепью и УРЧ жестко регламентируется. Избирательность по соседнему каналу (т. е. относительно радиостанций, работающих на частотах, близких к частоте сигнала) осуществляется в основном частотной характеристикой УПЧ. Частотные характеристики входной цепи и УРЧ, а также УПЧ (перенесена на частоту сос) указаны условно на рис. 5.3. Из рисунка видно, что ослабление зеркального канала входной цепью и УВЧ возрастает при увеличении про-
межуточной частоты. Однако при этом возможно ухудшение избирательности по соседнему каналу. Это иногда заставляет использовать двойное (двукратное) преобразование частоты с высокой первой и низкой второй промежуточными частотами. При этом возможно получение оптимального соотношения избирательностей по зеркальному и соседнему каналам.
Если приемник способен настраиваться на частоты, близкие к соп, то для ослабления помех по каналу прямого прохождения в цепь связи антенны с входной цепью приходится включать специальные режекторные или отсасывающие фильтры. Частотная характеристика режекторного фильтра, настроенного на частоту сос п, также показана на рис. 5.3.
При использовании для гетеро-динирования основной частоты гетеродина (п = 1) можно устранить все паразитные каналы, кроме зеркального канала и канала прямого прохождения, выбором преобразовательного элемента с линейной зависимостью S (и г) и угла отсечки в = 180° (см. рис. 5.4). При этом в смесителе не возникают высшие гармоники частоты гетеродина, а следовательно, отсутствуют сопутствующие им паразитные каналы приема.
Следует заметить, что при выводе приведенных выше соотношений было сделано допущение, что преобразователь частоты линеен для сигнала и, следовательно, гармоник частоты сигнала не создает. При увеличении амплитуды сигнала это предположение становится неверным и в общем случае в составе тока преобразователя частоты появляются комбинационные частоты вида сок = |псог ± тсос |, где т — номер гармоники сигнала (самому сигналу соответствует т = 1). Это может существенно изменить число и относительную роль паразитных' каналов приема, а также нарушить линейную связь выходного (0п) и входного (Uc) напряжений. Область входных напряжений, в которой необходимо считаться с нелинейностью
смесителя, может быть определена частности, по кривым Кп (tVc). пол чаемым в результате экспериментал ных исследований.