Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК ЖБК 1часть.doc
Скачиваний:
86
Добавлен:
27.08.2019
Размер:
7.12 Mб
Скачать

3.2. Деформативность бетона

В бетоне принято различать деформации двух видов:

а) объемные, развивающиеся во всех направлениях под влиянием усадки, набухания, расширения (физико-химического или (и) температурного);

б) силовые, развивающиеся, главным образом, вдоль направления действующих усилий; силовым продольным деформациям соответствуют вполне определенные поперечные деформации, характеризуемые коэффициентом поперечной деформации (коэффициентом Пуассона).

3.3. Объемные деформации бетона

Усадка и набухание. Под усадкой в общем случае принято понимать объемное сокращение бетона (раствора, цементного камня) в результате физико-химических процессов, происходящих при взаимодействии цемента с водой, изменения влажности цементного камня и карбонизации бетона.

Усадку принято подразделять на две составляющие:

– химическую усадку, связанную с потерей воды при протекании процессов гидратации вяжущего;

– физическую усадку, обусловленную потерей части свободной влаги бетона при ее испарении из открытых пор и капилляров в атмосферу (при сухих условиях эксплуатации).

В общем случае величина усадочной деформации на макроскопическом уровне зависит от следующих основных факторов:

– количества, вида цемента и его активности;

– количества воды затворения или, другими словами, водоцементного отношения;

– температурно-влажностных условий окружающей среды;

– крупности заполнителя и его физико-механических свойств (как фактор, определяющий задерживающее влияние по отношению к свободным деформация усадки цементного камня);

– объемного содержания цементного камня в бетоне;

– межзерновой пустотности заполнителей бетона;

– присутствия добавок и ускорителей твердения, оказывающих влияния на условия формирования структуры бетона (процессы структурообразования).

3.4. Температурные деформации бетона

Нормы по проектированию железобетонных конструкций в интервале температур от –20 до +100 °С рекомендуют принимать значения коэффициента температурного расширения равным at = 1´10–5 1/°С. В наиболее часто встречаемых эксплуатационных ситуациях это значение мало отличается от коэффициента температурного расширения стали (1,2´10–5 1/°С).

3.5. Силовые деформации бетона

Если бетон подвергнуть попеременно нагрузке и разгрузке (циклическим нагружениям), то на полученном графике отчетливо выделяется участок остаточных относительных деформаций, который увеличивается с ростом количества циклов нагружения (рис. 3.5).

Рис. 3.5. Зависимость «s–e» при циклических нагружениях бетона.

Поэтому, силовые относительные деформации в зависимости от характера приложения нагрузки и длительности ее действия подразделяют на:

а) относительные деформации при однократном загружении кратковременной нагрузкой;

б) относительные деформации при длительном действии однократно приложенной нагрузки;

в) относительные деформации при многократно повторяющемся действии нагрузки.

3.6. Деформации бетона при однократном кратковременном загружении

Модуль деформаций бетона

Характеристикой упруго-пластических свойств бетона является его модуль деформаций, устанавливающий зависимость между напряжениями и относительными деформациями в любой точке диаграммы деформирования

Учитывая нелинейную связь между напряжениями и деформациями обычно используют при определении модуля продольных деформаций:

– мгновенный модуль полных деформаций Ес, выражаемый тангенсом угла наклона касательной к кривой, описывающей диаграмму «s–e» в ее произвольной точке (рис. 3.6);

Рис. 3.6. К определению модуля деформаций бетона

– средний модуль упругости Ecm, выражаемый тангенсом угла наклона секущей, проходящей через начало координат (s = 0) и точку на кривой при sе = 0,4fcm;

– начальный модуль упругости Ecо, выражаемый тангенсом угла наклона касательной к кривой, описывающей диаграмму «s–e», и проходящей в начале координат (sс = 0).

Величину среднего модуля упругости для тяжелого и мелкозернистого бетонов в соответствии с нормами определяют по эмпирической формуле вида (МПа):

(3.1)

Нормы проектирования железобетонных конструкций устанавливают значения среднего модуля упругости Ecm, основанные на структурно-механической модели бетона с учетом технологических свойств бетонной смеси.

Значения относительных деформаций в параметрических точках диаграммы деформирования бетона при осевом сжатии

Как было показано выше, при расчетах железобетонных конструкций диаграмма деформирования (состояния) рассматривается как обобщенная характеристика механических свойств бетона. Для ее аналитического описания, а также для определения критерия наступления предельного состояния конструкции, необходимо иметь обоснованные значения относительных деформаций в параметрических точках: eс1 – относительной деформации, соответствующей пиковым напряжениям диаграммы, и ecu – предельной деформации бетона при сжатии.

Нормы устанавливают значения относительной деформации eс1 в зависимости от класса бетона, соблюдая установленную тенденцию к ее возрастанию с ростом прочности материала. При этом численные значения, внесенные в СНБ 5.03.01-02 приняты с некоторым обоснованным запасом в сторону обеспечения безопасности конструкции. Особенно это характерно для высокопрочных бетонов (выше С50/60).

Если принятые в нормах численные значения относительной деформации eс1 отражают единую тенденцию возрастания этой величины с ростом прочности бетона, то в отношении назначения предельной относительной деформации (предельной сжимаемости) ecu у специалистов нет единого мнения. Нормы предлагают принимать предельную относительную деформацию для бетонов нормальной прочности (до С50/60 включительно) постоянной и равной ecu = 3,5 ‰ .

Коэффициент поперечных деформаций бетона при сжатии или так называемый коэффициент Пуассона принимают равным =0,20. В случае, когда допускается образование трещин в бетоне растянутой зоны, коэффициент Пуассона принимают равным =0.