
- •Ю.В. Попков, а.И. Колтунов, а.А. Хотько Железобетонные конструкции
- •Предисловие
- •Содержание
- •Рабочая программа
- •Цель и задачи дисциплины
- •Виды занятий и формы контроля знаний
- •3. Тематический план лекционного курса
- •Итого: 48 часов
- •4. Тематический план практических занятий
- •Итого: 16 часов
- •5. Рейтинговая система контроля успешности обучения студентов
- •6. Общие методические рекомендации по изучению курса
- •Основная
- •Дополнительная
- •Раздел 1. Физико-механические свойства
- •Вопросы для самоконтроля
- •Лекция 2. Физико-механические свойства бетона. Прочностные характеристики бетона
- •2.1. Общие сведения о сопротивлении бетона
- •2.2. Прочностные характеристики бетона
- •2.3. Сопротивление бетона растяжению
- •Вопросы для самоконтроля
- •Лекция 3. Деформативные свойства бетона
- •3.1. Диаграмма деформирования бетона
- •3.2. Деформативность бетона
- •3.3. Объемные деформации бетона
- •3.4. Температурные деформации бетона
- •3.5. Силовые деформации бетона
- •3.6. Деформации бетона при однократном кратковременном загружении
- •3.7. Деформации бетона при длительном действии нагрузки. Ползучесть бетона
- •Вопросы для самоконтроля
- •Лекция 4. Арматура для железобетонных конструкций
- •4.1. Требования, предъявляемые к арматуре
- •4.2. Механические свойства арматурных сталей
- •4.3. Классы арматуры, соответствующие им нормативные и расчетные сопротивления
- •4.4. Деформативные характеристики арматуры
- •4.5. Арматурные изделия
- •Вопросы для самоконтроля
- •Лекция 5. Физико-механические свойства железобетона
- •5.1. Совместная работа арматуры с бетоном
- •5.2. Усадка и ползучесть железобетона
- •Вопросы для самоконтроля
- •Лекция 6. Стадии напряженно-деформированного состояния сечений, нормальных к продольной оси железобетонного элемента
- •Вопросы для самоконтроля
- •Лекция 7. Основы РасчетА железобетонных конструкций
- •Метод предельных состояний
- •7.2. Воздействия на железобетонные конструкции в методе предельных состояний
- •7.3. Нормативные и расчетные характеристики материалов в методе предельных состояний
- •Вопросы для самоконтроля
- •Вопросы к Тестовому контролю
- •Раздел 2. Расчеты железобетонных конструкций по предельным состояниям Лекция 8. Прочность сечений, нормальных к продольной оси железобетонных конструкций в методе предельных усилий
- •8.1. Общие положения
- •Классификация методов расчета железобетонных элементов по прочности сечений, нормальных к продольной оси элемента при действии изгибающего момента и продольных сил.
- •8.2. Критерий, определяющий расчетный случай разрушения
- •8.3. Расчетные уравнения
- •Вопросы для самоконтроля
- •9.2. Упрощенный деформационный метод
- •Вопросы для самоконтроля
- •Лекция 10. Прочность сечений при действии изгибающих моментов и продольных сил с учетом влияния гибкости элементов стержневых систем
- •10.1. Основные положения расчета
- •10.2. Приближенные методы учета продольного изгиба при расчете сжатых элементов стержневых систем
- •10.3. Классификация конструкций по характеру проявления продольного изгиба
- •10.4. Расчетные длины сжатых элементов
- •10.5. Метод расчета, основанный на проверке «устойчивой прочности» гибкого элемента
- •10.6. Упрощенный нелинейный расчет (метод определения кривизны)
- •Вопросы для самоконтроля
- •Лекция 11. Прочность растянутых элементов
- •11.1. Центрально растянутые элементы.
- •11.2. Внецентренно растянутые элементы
- •12.2. Прочность наклонных сечений железобетонных элементов без поперечного армирования
- •12.3. Расчет элементов на действие поперечной силы на основе расчетной модели наклонных сечений
- •Вопросы для самоконтроля
- •Лекция 13. Прочность сечений, наклонных к продольной оси при действии изгибающего момента. Метод ферменной аналогии (стержневая модель)
- •13.1. Расчет прочности сечений, наклонных к продольной оси при действии изгибающего момента
- •13.2. Метод ферменной аналогии (стержневая модель)
- •Вопросы для самоконтроля
- •Лекция 14. Прочность железобетонных эллементов при местном действии нагрузок
- •14.1. Расчет бетонных элементов по прочности на смятие
- •14.2. Расчет прочности на смятие элементов с косвенным армированием
- •14.3. Расчет на отрыв
- •14.4. Расчет на продавливание
- •Вопросы для самоконтроля
- •Лекция 15. Усталостная прочность конструкций
- •Вопросы для самоконтроля
- •Лекция 16. Расчет трещиностойкости железобетонных конструкций
- •16.1. Сопротивление железобетонного элемента раскрытию нормальных трещин
- •16.2. Расчет ширины раскрытия наклонных трещин
- •Вопросы для самоконтроля
- •Лекция 17. Расчет железобетонных конструкций по деформациям
- •17.1. Предельно допустимые прогибы
- •17.2. Расчетные модели для определения прогибов
- •17.3. Прогибы железобетонных элементов, работающих без трещин
- •17.4. Прогибы железобетонных элементов, работающих с трещинами
- •Вопросы для самоконтроля
- •Лекция 18. Требования по конструированию железобетонных конструкций
- •18.1. Защитный слой бетона
- •18. 2. Предельное содержание арматуры в сечении
- •18.3. Минимальные размеры поперечного сечения
- •Минимально допустимая толщина железобетонных плит
- •18.4. Расстояния между стержнями продольной арматуры
- •18.5. Расстояние между стержнями поперечной арматуры
- •18.6. Рекомендуемые диаметры арматурных стержней
- •Предельно допустимые диаметры арматуры
- •Вопросы для самоконтроля
- •Раздел 3. Предварительно напряженные конструкции Лекция 19. Общие сведения о предварительно напряженных конструкциях
- •19.1. Общие сведения
- •19.2. Классификация предварительно напряженных конструкций
- •19.3. Технология создания предварительного напряжения в конструкциях
- •19.4. Сущность предварительно напряженных конструкций
- •Вопросы для самоконтроля
- •Лекция 20. Потери предварительного напряжения
- •20.1. Назначение величины предварительного напряжения
- •20.2. Виды потерь предварительного напряжения
- •20.3. Определение потерь предварительного напряжения
- •20.4. Усилие предварительного обжатия
- •20.5. Нормальные напряжения при обжатии
- •Вопросы для самоконтроля
- •Лекция 21. Особенности расчета предварительно напряженных конструкций
- •21.1. Общие положения
- •21.2. Особенности расчета предварительно напряженных конструкций по предельным состояниям первой группы
- •21.3. Особенности расчетов предварительно напряженных конструкций по предельным состояниям второй группы
- •21.4. Расчет предварительно напряженной конструкции при передаче усилия предварительного обжатия
- •Вопросы для самоконтроля
- •Лекция 22. Требования по конструированию предварительно напряженных железобетонных конструкций
- •22.1. Общие положения
- •22.2. Размещение арматуры в сечении
- •22.3. Защитный слой бетона
- •22.4. Требования к анкеровке напрягаемой арматуры
- •Вопросы для самоконтроля
- •Руководство к практическим занятиям Общие требования
- •Цели и содержание занятий
- •Тема 1. Расчет прочности нормальных сечений железобетонных элементов прямоугольного профиля при действии изгибающих моментов
- •Решение:
- •Пример 2
- •Решение:
- •Решение:
- •Пример 4
- •Решение:
- •Задачи для самостоятельного решения.
- •Пример 5
- •Пример 7
- •Пример 8
- •Задачи для самостоятельного решения
- •Тема 3 Расчет прочности нормальных сечений и площади продольной арматуры железобетонных элементов таврового профиля при действии изгибающих моментов
- •Пример 9
- •Решение:
- •Пример 10
- •Решение:
- •Задачи для самостоятельного решения.
- •Контрольная работа №1
- •Решение:
- •Пример 12
- •Решение:
- •Задачи для самостоятельного решения
- •Тема 5. Расчет прочности и площади поперечной арматуры наклонных сечений изгибаемых железобетонных элементов
- •Решение:
- •Пример 14
- •Решение:
- •Задачи для самостоятельного решения.
- •Тема 6. Расчет прочности и площади поперечного сечения продольной арматуры железобетонных элементов по общему деформационному методу с применением программного комплекса «Бета»
- •Пример 15
- •Задачи для самостоятельного решения
- •Контрольная работа №2
- •Вопросы к экзамену
- •Приложения
- •Термины и определения Арматура для железобетонных изделий и конструкций
- •Бетоны для бетонных и железобетонных конструкций
- •Конструкции и изделия бетонные и железобетонные
- •Проектирование бетонных и железобетонных конструкций
- •Изготовление бетонных и железобетонных конструкций
- •Эксплуатация бетонных и железобетонных конструкций
19.4. Сущность предварительно напряженных конструкций
При нагружении железобетонной конструкции в материалах растянутой зоны (бетон и арматура) в результате их совместной деформации возникают растягивающие усилия.
Усилия (F), действующие при осевом растяжении железобетонного элемента без предварительного напряжения в зависимости от величины относительных деформаций (х) могут быть описаны диаграммой, показанной на рис. 19.6а, из которой видно, что вследствие достаточно малых относительных деформаций (меньших, чем предельная растяжимость бетона ectu) усилие в растянутой арматуре растет медленно, демонстрируя ее слабое участие в восприятии внешнего усилия вплоть до появления трещин в бетоне. Бетон, в силу низких упругих свойств, быстро воспринимает внешнее усилие и входит в область сначала упруго-пластических (А–ОТ), а затем и пластических (ОТ–ОВ) относительных деформаций. Усилия, действующие при осевом растяжении предварительно напряженного элемента представлены на диаграмме, показанной на рис. 19.6б. Начальное состояние элемента характеризуется действием сжимающего усилия в бетоне Fcp и растягивающего усилия в напрягаемой арматуре Fsp. Пока внешнего растягивающего усилия нет, усилие растяжения в арматуре полностью уравновешено сжимающим усилием в бетоне, т.е. Fsp = Fcp. При приложении к элементу внешней растягивающей силы усилие в арматуре медленно увеличивается по прямой АрА, в то время как усилие в бетоне быстро убывает по прямой АсО. Рассматривая эти усилия как внутренние взаимно уравновешенные и не имеющие прямого отношения к усилиям от нагрузки, устанавливаем, что во всем диапазоне деформирования ОрО это усилие Fe непосредственно уравновешивается усилием растяжения арматуры.
На участке деформирования ООТ распределение дополнительных усилий от внешней нагрузки происходит по аналогии с распределением усилий в обычном железобетоне без предварительного напряжения. Таким образом, усилие, приводящее к образованию трещин в предварительно напряженном элементе, составляет:
(19.1)
где Fsp – усилие предварительного растяжения в арматуре;
Fct – растягивающее усилие, воспринимаемое бетоном после погашения обжатия;
DFsp – приращение усилия в напрягаемой арматуре после погашения обжатия в бетоне, равное
(19.2)
здесь ectu – предельная растяжимость бетона;
Asp – площадь напрягаемой арматуры;
Esp – модуль упругости напрягаемой арматуры.
Рис. 19.6. Диаграмма распределения усилий сопротивления осевому растяжению железобетонного (а) и предварительно напряженного элемента (б)
После образования трещин усилие, вызванное внешней нагрузкой, воспринимается арматурой в сечении с трещиной, а также бетоном и арматурой на участках между трещинами подобно тому, как это происходит в обычных железобетонных конструкциях.
Наиболее важным участком деформации элемента является участок эксплуатационных нагрузок, размещаемый обычно в зоне диаграммы ОрО. Это позволяет утверждать, что в предварительно напряженном элементе, работающем без трещин, все усилие от внешней эксплуатационной нагрузки полностью воспринимает напрягаемая арматура. Все сказанное выше о центральном растяжении справедливо и в отношении растянутой зоны изгибаемой конструкции.
В железобетоне арматурная сталь выполняет пассивную роль: она не может воспрепятствовать разрушающему бетон действию нагрузки, но смягчает последствия этого действия после образования трещин. В предварительно напряженном железобетоне арматура выполняет активную роль и инженер создает по собственному желанию силы, оказывающие противодействие усилиям от нагрузок, стремящихся вызвать разрушение конструкции.
Предварительное напряжение железобетонных конструкций позволяет получить следующие эффекты:
– снизить расход стали благодаря применению арматуры повышенной и высокой прочности при ее эффективном использовании;
– увеличить сопротивление конструкции образованию трещин в бетоне (трещиностойкость) и ограничение их ширины раскрытия;
– повысить жесткость конструкции (или снизить ее деформативность), благодаря чему удается перекрывать большие пролеты, возводить сверхвысокие сооружения;
– снизить собственный вес конструкции в результате уменьшения размеров сечений при применении бетонов повышенной прочности и, соответственно, расхода бетона, что в большинстве случаев приводит к снижению стоимости конструкций;
– повысить выносливость конструкций, работающих под воздействием многократно повторяющихся нагрузок;
– увеличить устойчивость сжатых элементов.