
- •Глава 1. Введение 10
- •Глава 9. Шифрмашина "Энигма" 130
- •Глава 10. Шифрмашина "Хагелин" 152
- •Глава 11. После "Энигмы" 172
- •Глава 12. Криптография с открытым ключом 179
- •Глава 13. Шифрование и Интернет 188
- •Предисловие
- •Глава 1. Введение Некоторые аспекты безопасности связи
- •Шифр Юлия Цезаря
- •Несколько основных определений
- •Три этапа дешифрования: идентификация, взлом системы и вскрытие ключей.
- •Коды и шифры
- •Оценка стойкости системы шифрования
- •Коды, обнаруживающие и исправляющие ошибки
- •Другие методы сокрытия содержания сообщений
- •Модульная арифметика
- •Модульное сложение и вычитание букв
- •Заключение
- •Глава 2. От Юлия Цезаря до простой замены Шифры Юлия Цезаря и их вскрытие
- •Шифры простой замены
- •Вскрытие шифра простой замены
- •Частоты встречаемости букв в других языках, кроме английского
- •Сколько знаков необходимо для дешифрования простой замены?
- •Глава 3. Многоалфавитные системы Усиление системы Юлия Цезаря: шифры Вижанэра
- •Вскрытие шифра Вижанэра
- •Индикаторы
- •Одноключевые сообщения
- •Распознавание одноключевых сообщений
- •Какой объем текста необходим для дешифрования шифра Вижанэра?
- •Цилиндр Джефферсона
- •Глава 4. Шифры-головоломки
- •Перестановки
- •Простая перестановка
- •Двойная перестановка
- •Другие виды перестановок
- •Регулярные перестановочные таблицы
- •Нерегулярные перестановочные таблицы
- •Оценка стойкости шифров перестановки
- •Общая концепция двойного шифрования
- •Глава 5. Двухбуквенные шифры
- •Замена "монограф-диграф"
- •Мдпм-шифры
- •Система "диграф-диграф"
- •Шифр Плейфера*)
- •Расшифрование в системе Плейфера
- •Криптоаналитические аспекты системы Плейфера
- •Двойной шифр Плейфера
- •Глава 6. Коды Характеристики кодов
- •Одночастевые и двухчастевые коды
- •Код плюс аддитивное шифрование
- •Глава 7. Шифры для шпионов
- •Шифры-решетки
- •Книжные шифры
- •Использование книжного шифра
- •Частоты встречаемости букв в книжных шифрах
- •Вскрытие книжного шифра
- •Индикаторы
- •Катастрофические ошибки при использовании книжного шифра
- •Шифры "агента Гарбо"
- •Первый шифр "агента Гарбо"
- •Второй шифр "агента Гарбо"
- •Одноразовый блокнот
- •Глава 8. Получение случайных чисел и букв Случайные последовательности
- •Получение случайных последовательностей
- •Бросание монеты
- •Бросание костей
- •Извлечение из урны (по типу лотереи)
- •Космические лучи
- •Шум от усилителей
- •Псевдослучайные последовательности
- •Линейные рекурренты
- •Использование последовательности двоичных знаков гаммы для шифрования
- •Двоичные линейные последовательности как генераторы гаммы
- •Криптоанализ линейной рекурренты
- •Повышение стойкости двоичной гаммы
- •Генераторы псевдослучайных чисел
- •Метод срединных квадратов
- •Линейные конгруэнтные генераторы
- •Глава 9. Шифрмашина "Энигма" Историческая справка
- •Первая "Энигма"
- •Шифрование с использованием контактных колес
- •Шифрование в "Энигме"
- •Коммутатор "Энигмы"
- •Ахиллесова пята "Энигмы"
- •Цепочки индикаторов в "Энигме"
- •Выравнивание цепочек
- •Идентификация колеса r1 и его угловой установки
- •Двойное шифрование в "Энигме"
- •"Энигма" Абвера
- •Глава 10. Шифрмашина "Хагелин" Историческая справка
- •Конструкция шифрмашины «Хагелин»
- •Шифрование при помощи шифрмашины "Хагелин"
- •Выбор установок барабана в шифрмашине "Хагелин"
- •Теоретический объем перебора для шифрмашины "Хагелин"
- •Вскрытие установок "Хагелина" по отрезку гаммы
- •Дополнительные возможности шифрмашины "Хагелин"
- •Смещение
- •Определение смещения по шифрованному тексту
- •Перекрытия
- •Вскрытие шифрмашины "Хагелин" только по шифрованному тексту
- •Глава 11. После "Энигмы" sz42 - предтеча электронных машин
- •Описание шифрмашины sz42
- •Шифрование в машине sz42
- •Вскрытие шифрмашины sz42 и определение ее угловых установок
- •Модификации шифрмашины sz42
- •Глава 12. Криптография с открытым ключом Историческая справка
- •Вопросы безопасности
- •Защита программ и данных
- •Шифрование программ, данных и сообщений
- •Задача распределения ключей
- •Система ключевого обмена Диффи-Хеллмана
- •Стойкость системы Диффи-Хеллмана
- •Глава 13. Шифрование и Интернет Обобщение шифра простой замены
- •Факторизация больших целых чисел
- •Стандартный метод факторизации
- •Малая теорема Ферма
- •Теорема Ферма-Эйлера (для случая системы rsa)
- •Ключи зашифрования и расшифрования в системе rsa
- •Процессы зашифрования и расшифрования в системе rsa
- •Каким образом хозяин ключей отвечает корреспондентам?
- •Американский Стандарт Шифрования Данных (des)*)
- •Общие сведения
- •Процедура зашифрования
- •Процедура расшифрования
- •Стойкость des-алгоритма
- •Зацепление
- •Реализации des-алгоритма
- •Совместное использование алгоритмов rsa и des
- •Полезное замечание
- •После des-алгоритма
- •Проверка подлинности сообщения и удостоверение подлинности подписи
- •Криптография эллиптической кривой
- •Приложение. Математические вопросы Глава 2 м1. Совпадения знаков в алфавитах замены
- •М2. Снижение стойкости при использовании взаимно-обратных алфавитов
- •M3. Парадокс дней рождения
- •Глава 3 м4. Евклидово доказательство бесконечности множества простых чисел
- •Глава 6 м5. Последовательность чисел Фибоначчи
- •Глава 7 м6. Частота встречаемости букв для книжного шифра
- •М7. Одноразовый блокнот дешифровать невозможно
- •Глава 8 м8. Частота появления случайных чисел на странице
- •М9. Комбинирование двух последовательностей двоичных знаков гаммы, имеющих отклонения
- •М10. Последовательность типа Фибоначчи
- •М11. Двоичные линейные рекурренты
- •M12. Восстановление двоичной линейной рекурренты по отрезку гаммы
- •М13. Получение псевдослучайных чисел
- •Глава 9 м14. Распайка колёс шифрмашины "Энигма"
- •М15. Число возможных отражателей шифрмашины "Энигма"
- •М16. Вероятность одноключевых сообщений для "Энигмы"
- •М17. Среднее число индикаторов, необходимое для построения полных цепочек
- •Глава 10 м18. Число возможных барабанов шифрмашины "Хагелин"
- •М19. Максимальная кратность значения зацепления, которая может встретиться при вычислении разности гаммы шифрмашины "Хагелин"
- •M20. Определение смещения шифрмашины "Хагелин" с помощью коэффициента корреляции
- •Глава 13 m21. (Порядок роста количества простых чисел)
- •M22. Вычисление остатка с использованием модульной арифметики
- •М23. Доказательство теоремы Ферма-Эйлера
- •М24. Нахождение чисел, "предположительно" являющихся простыми
- •M25. Алгоритм Евклида
- •М26. Эффективность возведения в степень методом последовательного возведения в квадрат
- •М27. Число ложных ответов при дешифровании des-алгоритма методом "встречного поиска "
- •М28. Криптография эллиптической кривой
- •Решения задач Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 13
- •Литература
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 4
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •Глава 13
M22. Вычисление остатка с использованием модульной арифметики
То, что запись числа (59)96 содержит 171 цифру, следует из того факта, что
96log10(59)=96(1.77085...)=170.0018...
Отсюда вытекает, что число (59)96 заключено между величинами 10170 и 10171, и следовательно, его запись содержит 171 цифру.
При использовании модульной арифметики бывает выгодно вычесть из показателя степени максимально возможную степень двойки, затем возвести число в степень (нечетного) остатка, и наконец, последовательно возводя его в квадрат, найти требуемое значение. Так, например, поскольку 96=332, то если мы вычислим (59)3(mod 97) и последовательно возведем это значение в квадрат пять раз, на каждом этапе приводя результат по модулю 97, то в результате получим нужное нам число. В деталях это выглядит так:
5959=3481=3597+86,
следовательно,
(59)38659=5074=5297+3030(mod 97),
поэтому
(59)6(30)2=900=997+2727(mod 97),
поэтому
(59)12(27)2=729=797+5050(mod 97),
следовательно,
(59)24(50)2=2500=2597+7575(mod 97),
следовательно,
(59)48(75)2=5625=5797+9696(mod 97) -1(mod 97),
и наконец,
(59)96(-1)2=1(mod 97),
то есть, как и утверждалось, (59)96 дает при делении на 97 остаток 1.
М23. Доказательство теоремы Ферма-Эйлера
Полезно будет начать с доказательства малой теоремы Ферма; в этом случае обобщение на случай теоремы Ферма-Эйлера остановится почти очевидным.
Малая теорема Ферма утверждает, что
Если p - простое число, то для любого целого числа M, которое не делится на p, справедливо
M(p-1)1(mod p).
Доказательство
Полное множество вычетов ("остатков") по модулю p для чисел, которые не делятся на p, есть
1, 2, 3, ..., (p-1).
Умножим каждое из этих чисел на M:
M, 2M, 3M, ..., (p-1)M.
Никакая пара из этого множества чисел не дает по модулю p одного и того же вычета, так как если бы, например, выполнялось
aM bM(mod p),
то в этом случае число M(a-b) делилось бы на p. Однако M не делится на p, а числа a и b оба меньше p. Поэтому все (p-1) этих чисел будет различны по модулю p. Следовательно, это то же самое множество чисел
1, 2, 3, ..., (p-1),
только переставленное в некотором порядке. Поэтому
M2M3M...((p-1)M) 123...(p-1)(mod p)=(p-1)!(mod p).
Поскольку число (p-1)! не имеет общих делителей с p, то его можно исключить из обеих частей последнего сравнения, после чего получаем:
M(p-1)1(mod p),
что и доказывает Малую теорему Ферма.
Доказательство теоремы Ферма-Эйлера
Теперь мы имеем дело с составным модулем N. Доказательство выполняется аналогично предыдущему, но теперь вместо использования всех вычетов по модулю p мы должны рассмотреть только те из них, которые не имеют с N общих делителей. Если обозначить их через
a1, a2,..., ak,
где k=(N), а (N) - это функция Эйлера, определенная в М11. Если каждый из этих вычетов умножить на M, то они, как и ранее, все останутся различными, так как если бы выполнялось
Mar Mas (mod N),
то M(ar-as) делилось бы на N. Но это невозможно, так как M не имеет с N общих делителей, а (ar-as) меньше N. Итак, мы доказали, что
если M не имеет с N общих делителей, то
M(N)1(mod N),
и теорема Ферма-Эйлера доказана.
В системе шифрования RSA нам понадобится только частный случай, когда N=pq, где p и q - два различных простых числа. В этом случае (N)=(p-1)(q-1).