- •Содержание
- •Введение
- •Общие указания к выполнению лабораторных работ
- •Правила оформления отчета по лабораторным работам.
- •Требования к допуску, выполнению и защите лабораторных работ.
- •Лабораторная работа 1–01 “Изучение основных измерительных приборов и определение линейных размеров твердых тел”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов измерений:
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1–02 “Определение плотности образца и вычисление погрешностей косвенных измерений”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-03 “Изучение погрешностей измерения ускорения свободного падения с помощью математического маятника”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-04 “Статистическая обработка результатов эксперимента. Случайные погрешности результатов наблюдений интервалов времени”
- •Методика измерений
- •Контрольные вопросы.
- •Используемая литература.
- •Лабораторная работа 1-05“Исследование упругого соударения шаров”
- •Теоретическое введение
- •Методика измерений
- •Порядок выполнения лабораторной работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Лабораторная работа 1-06 “Определение коэффициента трения твердых тел”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа 1-07 “Определение момента инерции тела с помощью наклонной плоскости”.
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-08 “Исследование динамики вращательного движения на маятнике Обербека”
- •Теоретическое введение
- •Экспериментальная часть.
- •Методика измерения
- •Замечание 1: погрешность времени рассчитывается по стандартной методике расчета погрешностей случайной величины:
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-09 “Определение момента инерции маховика”.
- •Теоретическое введение
- •Методика измерений
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемые литература
- •Лабораторная работа 1-10 “Маятник Максвелла”
- •Теоретическое введение
- •Экспериментальная часть
- •Экспериментальная установка
- •Порядок выполнения работы
- •Расчёт погрешностей:
- •Контрольные вопросы:
- •Используемая литература:
- •Лабораторная работа 1-11 “Изучение характеристик механического гироскопа”
- •Теоретическое введение
- •Экспериментальная часть
- •Методика измерений
- •Экспериментальная установка
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-12 “Определение коэффициента вязкости воздуха капиллярным методом”
- •Теоретическое введение
- •Порядок выполнения работы
- •Обработка результатов измерений
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-13 “Определение динамического коэффициента вязкости”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-14 “Определение коэффициента вязкости жидкости по методу Пуазейля”
- •Теоретическое введение
- •Методика определения
- •Лабораторная установка
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы.
- •Используемая литература.
- •Лабораторная работа 1-15 “Определение коэффициента вязкости жидкости методом Стокса”.
- •Теоретическое введение
- •Экспериментальная часть
- •Метод определения
- •Порядок выполнения работы
- •Используемая литература
- •Лабораторная работа 1-16 “Определение модуля Юнга методом прогиба”
- •Теоретическое введение
- •Экспериментальная часть
- •Лабораторная установка
- •Методика измерений
- •Контрольные вопросы.
- •Используемая литература
- •Лабораторная работа 1-17 “Изучение упругой деформации растяжения”
- •Теоретическое введение
- •Экспериментальная часть
- •Лабораторная установка
- •Методика измерения
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-18 “Изучение свободных колебаний пружинного маятника”
- •Теоретическое введение
- •Экспериментальная часть
- •Описание установки
- •Контрольные вопросы.
- •Лабораторная работа 1-19 “Изучение колебаний физического маятника”
- •Теоретическое введение
- •По второму закону Ньютона для вращательного движения маятника:
- •Экспериментальная часть
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-20 “Определение коэффициента трения качения методом исследования колебаний наклонного маятника”
- •Теоретическое введение
- •Методика измерения
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-21 “Измерение момента инерции тела методом крутильных колебаний”
- •Теоретическое введение Движение твердого тела с закрепленной осью.
- •Экспериментальная часть
- •Порядок выполнения работы
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-22 “Определение отношения удельных теплоемкостей для воздуха методом адиабатического расширения”
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-23 “Определение отношения акустическим методом”
- •Экспериментальная часть
- •Методика измерений
- •Порядок выполнения работы
- •Контрольные вопросы
- •Используемая литература
- •Лабораторная работа 1-24 “Определение теплоемкости твердых тел”
- •Теоретическое введение
- •Методика измерений
- •Порядок выполнения работы
- •Обработка результатов измерений
- •Контрольные задания
- •Используемая литература
- •Лабораторная работа 1-25 “Определение изменения энтропии при нагревании и плавлении олова“
- •Теоретическое введение
- •Экспериментальная часть
- •Порядок выполнения работы
- •Обработка результатов измерения
- •Контрольные вопросы
- •Используемая литература
- •Библиографический список
- •Приложения Справочные материалы
Контрольные вопросы.
Что такое динамический коэффициент вязкости?
Что такое кинематический коэффициент вязкости?
В чем состоит метод Пуазейля определения вязкости?
Что такое число Рейнольдса ? Что оно характеризует?
Какое течение жидкости называют ламинарным?
Какое течение жидкости называют турбулентным?
Объясните механизм внутреннего трения жидкости.
От каких факторов зависит вязкость жидкости?
Как и почему меняется вязкость жидкости с изменением температуры ?
Используемая литература.
[1] §72-78; [2] §39-43; [3] 10.6-10.8; [7]§28-33; [4]§45/
Лабораторная работа 1-15 “Определение коэффициента вязкости жидкости методом Стокса”.
Цель работы: ознакомление с методом Стокса и определение коэффициента вязкости различных жидкостей.
Теоретическое введение
Во всех реальных жидкостях и газах при перемещении одного слоя относительно другого возникают силы трения. Со стороны слоя, движущегося более быстро, на слой, движущийся медленнее, действует ускоряющая сила. Наоборот, со стороны слоя, движущегося медленнее, на более быстрый слой действует тормозящая сила. Эти силы, носящие название сил внутреннего трения, направлены по касательной к поверхности слоёв.
П
усть
два слоя (рис.15.1) площади
,
отстоящих друг от друга на расстояние
,
движутся со скоростями v1
и v2
соответственно, Δv=v2–v1.
Направление, в котором отсчитывается
расстояние между слоями (ось z),
перпендикулярно вектору скорости
движения слоев. Величина
,
которая показывает, как быстро меняется скорость при переходе от слоя к слою, называется градиентом скорости. Величина силы внутреннего трения , действующей между слоями, пропорциональна площади соприкосновения движущихся слоёв и градиенту скорости (закон Ньютона):
,
(15.1)
где – коэффициент вязкости (динамическая вязкость). Знак «–» показывает, что сила направлена противоположно градиенту скорости, то есть что быстрый слой тормозится, а медленный – ускоряется.
Единицей измерения коэффициента вязкости в СИ служит такая вязкость, при которой градиент скорости, равный 1 м/с на 1м, приводит к силе внутреннего трения в 1 Н на 1 м2 площади слоев. Эта единица называется паскаль-секундой (Па.с). В некоторые формулы (например, число Рейнольдса, формула Пуазейля) входит отношение коэффициента вязкости к плотности жидкости ρ. Это отношение получило название коэффициента кинематической вязкости :
.
(15.2)
Для жидкостей, течение которых подчиняется уравнению Ньютона (15.1), вязкость не зависит от градиента скорости. Такие жидкости называются ньютоновскими. К неньютоновским (то есть не подчиняющимся уравнению (15.1)) жидкостям относятся жидкости, состоящие из сложных и крупных молекул, например, растворы полимеров.
Вязкость данной жидкости сильно зависит от температуры: при изменениях температуры, которые сравнительно нетрудно осуществить на опыте, вязкость некоторых жидкостей может изменяться в миллионы раз. При понижении температуры вязкость некоторых жидкостей настолько возрастает, что жидкость теряет текучесть, превращаясь в аморфное твердое тело.
Я.И. Френкель вывел формулу, связывающую коэффициент вязкости жидкости с температурой:
,
(15.3)
г
де
А
– множитель, который зависит от расстояния
между соседними положениями равновесия
молекул в жидкости и от частоты колебаний
молекул, ΔЕ
– энергия, которую надо сообщить молекуле
жидкости, чтобы она могла перескочить
из одного положения равновесия в другое,
соседнее (энергия активации). Величина
ΔЕ
обычно имеет порядок (2÷3).10-20
Дж, поэтому, согласно формуле (15.3), при
нагревании жидкости на 100С
вязкость её уменьшается на 20÷30%.
Значения коэффициентов вязкости газов существенно меньше, чем жидкостей. С повышением температуры вязкость газа увеличивается (рис.15.2) и при критической температуре становится равной вязкости жидкости.
Отличие в характере поведения вязкости при изменении температуры указывает на различие механизма внутреннего трения в жидкостях и газах. Молекулярно-кинетическая теория объясняет вязкость газов переносом импульса из одного слоя в другой слой, происходящим за счет переноса вещества при хаотическом движении молекул газа. В результате в слое газа, движущемся медленно, увеличивается доля быстрых молекул, и его скорость (средняя скорость направленного движения молекул) возрастает. Слой газа, движущийся медленно, увлекается более быстрым слоем, а слой газа, движущийся с большей скоростью, замедляется. С повышением температуры интенсивность хаотического движения молекул газа возрастает, и вязкость газа увеличивается.
Вязкость жидкости имеет другую природу. В силу малой подвижности молекул жидкости перенос импульса из слоя в слой происходит из-за взаимодействия молекул. Вязкость жидкости в основном определяется силами взаимодействия молекул между собой (силами сцепления). С повышением температуры взаимодействие молекул жидкости уменьшается, и вязкость также уменьшается.
Несмотря на различную природу, вязкость жидкостей и газов с макроскопической точки зрения описывается одинаковым уравнением (15.1). Величину импульса , перенесенного из одного слоя газа или жидкости в другой слой за время Δt, можно найти из второго закона Ньютона:
.
(15.4)
Из (15.1) и (15.4) получим:
.
(15.5)
Тогда физический смысл коэффициента динамической вязкости можно сформулировать так: коэффициент вязкости численно равен импульсу, перенесенному между слоями жидкости или газа единичной площади за единицу времени при единичном градиенте скорости. Знак «минус» показывает, что импульс переносится из более быстрого слоя в более медленный.
При движении тела в вязкой среде возникают силы сопротивления. Происхождение этого сопротивления двояко.
При
небольших скоростях,
когда за телом нет вихрей (то есть
обтекание тела ламинарное),
сила сопротивления обуславливается
вязкостью среды. Между движущимся телом
и средой существуют силы сцепления, так
что непосредственно вблизи поверхности
тела слой газа (жидкости) полностью
задерживается, как бы прилипая к телу.
Он трется о следующий слой, который
слегка отстает от тела. Тот, в свою
очередь, испытывает силу трения со
стороны еще более удаленного слоя и
т.д. Совсем далекие от тела слои можно
считать покоящимися. Для ламинарного
потока сила трения пропорциональна
скорости тела:
.
Теоретический расчет внутреннего трения
для движения шарика
в вязкой
среде с небольшой скоростью, когда нет
вихрей, приводит к формуле
Стокса:
,
(15.6)
где – радиус шарика, – скорость его движения, – коэффициент динамической вязкости среды.
Второй
механизм сил сопротивления включается
при больших скоростях движения тела,
когда поток становится турбулентным.
При увеличении скорости тела вокруг
него возникают вихри. Часть работы,
совершаемой при движении тела в жидкости
или газе, идет на образование вихрей,
энергия которых переходит во внутреннюю
энергию. При турбулентном потоке в
некотором интервале скоростей сила
сопротивления пропорциональна квадрату
скорости тела:
.
