Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пособ ЭТПиУ 9.02.10.doc
Скачиваний:
157
Добавлен:
06.05.2019
Размер:
13.07 Mб
Скачать

Раздел I. Электротермические процессы и

УСТАНОВКИ

Глава 1. Физико-технические основы электротермии

1.1. Электротермические установки и области их применения

Понятие «электротермия» объединяет большой класс технологических процессов в различных отраслях промышленности, основой которых служит нагрев материалов и изделий с помощью электрической энергии.

В электротермии можно выделить следующие способы преобразования электрической энергии в тепловую.

Нагрев сопротивлением происходит за счет выделения теплоты в проводящем материале при протекании по нему электрического тока. Этот вид нагрева основан на законе Джоуля-Ленца и применяется в установках прямого и косвенного действия.

В установках прямого действия теплота выделяется непосредственно в нагреваемом изделии, включаемом в цепь. В установках косвенного действия тепловая энергия выделяется в специальных нагревательных элементах и затем по законам теплопередачи поступает в нагреваемый объект. В обоих случаях нагреваемые объекты могут быть в твердом, жидком или газообразном состоянии.

Индукционный нагрев, основанный на преобразовании энергии электромагнитного поля в тепловую посредством наведения в нагреваемом теле вихревых токов и тепловыделения в нем по закону Джоуля-Ленца. Нагрев может осуществляться прямым или косвенным методом.

Диэлектрический нагрев помещенных в высокочастотное электрическое поле непроводящих материалов и полупроводников, происходящий за счет сквозных токов проводимости и смещения при поляризации.

Дуговой нагрев, при котором материал нагревается за счет теплоты, поступающей в него из опорных пятен дуги, а также вследствие теплообмена с дугой и электродами.

Электронно- и ионно-лучевой нагрев, в результате которого тепловая энергия выделяется при столкновении быстродвижущихся электронов или ионов, ускоренных электрическим полем, с поверхностью нагреваемого объекта.

Плазменный нагрев, основанный на нагреве газа за счет пропускания его через дуговой разряд или высокочастотное электромагнитное или электрическое поле. Полученная таким образом низкотемпературная плазма используется для нагрева различных сред.

Лазерный нагрев, происходящий за счет нагрева поверхности объектов при поглощении ими высококонцентрированных потоков световой энергии, полученных в лазерах оптических квантовых генераторах.

1.2. Теплопередача в электротермических установках

Основные параметры электротермических установок (мощность, коэффициент полезного действия, удельный расход электроэнергии) определяют в результате расчета теплоты, требуемой для технологического процесса, а также расчета процессов теплообмена между источником теплоты и окружающей средой. Теплообмен определяется законами теплопередачи. Процесс теплообмена является сложным, поэтому в инженерных расчетах его подразделяют на более простые составляющие теплопроводность, конвекцию и излучение (лучистый теплообмен).

Теплопроводность это передача теплоты внутри твердого тела или неподвижной жидкости (газа) от областей с более высокой температурой к областям с более низкой температурой.

В соответствии с молекулярно-кинетической теорией теплопроводность обусловлена тепловым движением и энергетическим взаимодействием микрочастиц (молекул, атомов, электронов). Частицы с большей энергией отдают часть своей энергии менее нагретым при соударении. Скорость теплопередачи в этом случае зависит от физических свойств вещества, в частности от его плотности. При стационарных процессах теплопередачи тепловой поток, проходящий через тело в единицу времени, постоянный, так как в процессе передачи теплоты теплосодержание тела не изменяется.

Тепловой поток (Вт) через однослойную плоскую стенку при установившемся режиме определяется по формуле Фурье:

(1.1)

где и температуры поверхностей стенки, К; l ее толщина, (м); F площадь проводящей стенки, ; коэффициент теплопроводности, зависящий от природы вещества и температуры, Вт/(м К).

Для большинства применяемых в печестроении материалов:

, (1.2)

здесь коэффициент теплопроводности при 273 К; - температурный коэффициент; средняя температура стенки, К.

Конвекция теплопередача в жидкостях и газах, при которой перемещаются отдельные частицы и отдельные элементы объема вещества, переносящие присущий им запас тепловой энергии. Перенос теплоты вместе с переносом массы вещества называют конвективным теплообменом.

Если передача теплоты конвекцией обусловлена лишь разностью плотностей вещества вследствие различных температур, то такая конвекция называется естественной или свободной. При наложении на нагретый объем вещества внешних сил (принудительное перемещение вещества) теплоперенос называют вынужденной конвекцией.

Тепловой поток конвективного теплообмена определяют на основании закона Ньютона-Рихмана:

, (1.3)

где коэффициент теплоотдачи конвекцией, Вт/( ); температура стенки; температура окружающей среды; F поверхность конвективного теплообмена, .

Коэффициент теплоотдачи представляет собой количество теплоты, передаваемой в единицу времени через единицу поверхности при разности температур между поверхностью и омывающей жидкостью в 1 К.

Излучение передача теплоты в невидимой (инфракрасной) и видимой частях спектра. При передаче теплоты излучением энергия передается в форме электромагнитных волн. Для передачи тепловой энергии наиболее существенными являются тепловое излучение с длиной волны 0,4-400 мк. Между нагретыми телами, расположенными в пределах видимости друг друга, всегда происходит лучистый теплообмен. При этом суммарный тепловой поток направлен от более нагретого тела к менее нагретому. Этот поток определяется температурами тел, степенью их черноты и размерными факторами.

При излучении нагретого тела в неограниченное пространство (при односторонней теплопередаче) лучистый тепловой поток (Вт/ ):

, (1.4)

где постоянный коэффициент излучения абсолютно черного тела; степень черноты тела, численно равная его поглощающей способности (для абсолютно черного тела =1); T абсолютная температура, К.