
- •Оглавление
- •Введение
- •Условные обозначения в электрических схемах
- •Инструкция № 40
- •Общие положения
- •Правила поведения и обязанности студентов при выполнении лабораторных работ в учебных лабораториях кафедры
- •Подготовка к лабораторной работе
- •Порядок допуска к выполнению лабораторной работы
- •Порядок выполнения лабораторной работы
- •Форма представления результата
- •Форма представления результата
- •Построение графиков
- •Пример построения графика
- •График зависимости длины стержня от растягивающей нагрузки
- •1. Электростатическое поле
- •1.1. Напряженность электрического поля
- •1.2. Потенциал
- •1.3. Связь между напряженностью и потенциалом
- •1.4. Линии напряженности и поверхности равного потенциала
- •1.5. Проводники в электростатическом поле
- •1.6. Электроемкость
- •1.7. Диэлектрики в электростатическом поле
- •Лабораторная работа №1 изучение электростатического поля
- •Методика и техника эксперимента
- •Порядок выполнения работы
- •1. Дно ванны заполните водой.
- •Контрольные вопросы
- •Лабораторная работа №2 изучение электроемкости конденсаторов
- •Методика и техника эксперимента
- •Задание 1. Определение баллистической постоянной
- •Задание 2. Определение емкостей исследуемых конденсаторов
- •Задание 4. Измерение емкости последовательно соединенных конденсаторов
- •Контрольные вопросы
- •II. Постоянный электрический ток
- •2.1. Электрический ток, его характеристики и условия существования
- •2.2. Закон Ома в дифференциальной форме с точки зрения классической теории проводимости металлов (ктпм)
- •2.3. Обобщенный закон Ома
- •2.4. Закон Джоуля-Ленца
- •2.5. Разветвлённые цепи. Правила Кирхгофа
- •Лабораторная работа №3 исследование цепи постоянного тока
- •Методика и техника эксперимента
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа №4 экспериментальное изучение правил кирхгофа
- •Методика и техника эксперимента
- •Методика и техника эксперимента
- •Контрольные вопросы
- •Порядок выполнения работы
- •Вариант 1
- •I. Определение сопротивления r1
- •II. Определение сопротивления r2.
- •IV. Определение общего сопротивления при параллельном соединении сопротивлений r1 и r2
- •Вариант 2
- •Контрольные вопросы
- •Лабораторная работа №7 определение удельного сопротивления нихромовой проволоки
- •Методика эксперимента
- •Порядок выполнения работы
- •Измерения и вычисления для схемы 1
- •Измерения и вычисления для схемы 2
- •Справочные данные и параметры установки
- •Контрольные вопросы
- •Лабораторная работа №8 изучение температурной зависимости сопротивления проводников
- •Методика эксперимента
- •Контрольные вопросы
- •III. Электрический ток в вакууме
- •Лабораторная работа №9. Определение работы выхода электрона из металла
- •Методика и техника эксперимента
- •Порядок выполнения работы
- •Контрольные вопросы
- •Лабораторная работа №10. Изучение работы трехэлектродной лампы
- •Методика и техника эксперимента
- •Порядок выполнения работы
- •Контрольные вопросы
- •IV. Постоянное магнитное поле
- •4.1. Магнитное поле и его характеристики. Закон Ампера.
- •(Нерелятивистский случай)
- •4 .3. Закон Био-Савара-Лапласа
- •4.4. Индукция магнитного поля соленоида
- •4.5. Магнитный поток
- •4.6. Действие магнитного поля на заряды
- •4.7. Электромагнитная индукция
- •V. Магнитное поле в веществе
- •5.1. Магнитные моменты электронов и атомов
- •5.3. Намагниченность
- •5.4. Магнитное поле в веществе
- •5.5. Ферромагнетики
- •Контрольные вопросы
- •Лабораторная работа № 12. Определение удельного заряда электрона методом магнетрона
- •Методика и техника эксперимента
- •Контрольные вопросы
- •Лабораторная работа № 13. Определение удельного заряда электрона
- •Методика эксперимента
- •Контрольные вопросы
- •Лабораторная работа № 14. Изучение явления взаимной индукции
- •Методика и техника эксперимента
- •Контрольные вопросы
- •Лабораторная работа № 15. Определение индуктивности катушки с помощью моста максвелла
- •Методика и техника эксперимента
- •Контрольные вопросы
- •Лабораторная работа № 16. Изучение работы трансформатора переменного тока
- •Методика эксперимента
- •Контрольные вопросы
- •Лабораторная работа № 17. Изучение гистерезиса ферромагнитных материалов
- •Методика и техника эксперимента
- •Контрольные вопросы
- •VI. Электромагнитные колебания
- •6.1. Колебательный контур
- •6.2. Затухающие колебания
- •6.3. Вынужденные колебания
- •6.4. Резонанс
- •Лабораторная работа № 18. Исследование затухающих колебаний в колебательном контуре
- •Методика и техника эксперимента
- •Контрольные вопросы
- •Лабораторная работа № 19. Изучение вынужденных колебаний в колебательном контуре
- •Методика и техника эксперимента
- •Контрольные вопросы
- •Лабораторная работа № 20. Измерение мощности переменного тока и сдвиг фаз между током и напряжением
- •Методика эксперимента
- •Контрольные вопросы
- •Лабораторная работа № 21. Выпрямление переменного тока с помощью мостовой схемы
- •Методика эксперимента
- •Контрольные вопросы
- •Приложение Основные физические постоянные (округленные значения)
- •Работа выхода электронов
- •Греческий алфавит
- •Множители и приставки
- •Электричество и магнетизм
- •664074, Иркутск, ул. Лермонтова, 83
2.2. Закон Ома в дифференциальной форме с точки зрения классической теории проводимости металлов (ктпм)
Создатели классической электронной теории проводимости – Друдэ и Лоренц. Согласно этой теории высокая электропроводность металлов объясняется:
1) наличием громадного количества свободных электронов;
2) движение электронов подчиняется законам классической механики Ньютона;
3) в этой теории пренебрегают взаимодействием электронов между собой, а взаимодействие электронов с положительными ионами сводят только к соударениям.
Таким образом, электроны проводимости в теории Друдэ-Лоренца рассматриваются как электронный газ, обладающий свойствами одноатомного идеального газа.
j = ne‹V›. (2.1)
На каждый электрон
действует сила F
= eE,
которая сообщает ему ускорение: F
= ma
=
.
Скорость электрона
изменяется от 0 до Vmax.
Тогда средняя скорость дрейфа электрона:
– среднее время свободного пробега
электрона (т.е. среднее время между двумя
последовательными соударениями).
1/γ = ρ – удельное сопротивление проводника. Таким образом, получаем
–
это закон Ома в дифференциальной форме: плотность тока проводимости j равна произведению удельной электропроводности проводника на напряженность электрического поля в проводнике.
Вектора j и Е имеют одинаковое направление.
2.3. Обобщенный закон Ома
Если в проводнике создать электрическое поле и не принять мер для его поддержания, то перемещение носителей тока приведет очень быстро к тому, что напряженность внутри проводника станет равной нулю и ток прекратится. Таким образом, при наличии лишь кулоновских сил невозможно поддерживать в цепи электрический ток. Следовательно, для поддержания в цепи постоянного тока необходимо, чтобы на носители тока действовали помимо кулоновских сил иные силы, не электростатического происхождения, называемые сторонними.
Если кулоновские силы вызывают соединение разноименных зарядов, выравнивание потенциала и исчезновение поля в проводнике, то сторонние силы, наоборот вызывают разделение разноименных зарядов и поддерживают разность потенциалов на концах проводника. Сторонние силы действуют на носители тока внутри источников электрической энергии (гальванических элементов, аккумуляторов, электрических генераторов и т.п.).
В общем случае, на носитель тока q, действует сила:
где
–
напряженность поля кулоновских сил,
–
напряженность поля сторонних сил. Тогда
Умножим скалярно обе части равенства на dl. |dl | – длина элемента проводника. Вектор dl направлен по току.
Интегрируем
данное выражение по длине участка цепи
1-2:
электродвижущая
сила (ЭДС), действующая на участке 1-2.
–
ЭДС численно равна работе, совершаемой сторонними силами при перемещении единичного положительного заряда.
–
напряжение на участке
цепи 1-2.
Напряжение – это физическая величина, численно равная суммарной работе, совершаемой кулоновскими и сторонними силами при перемещении по участку 1-2 единичного положительного заряда. Таким образом,
U12 = (φ1 – φ2) + ε12.
Сопротивление на участке 1-2:
|
Однородный участок
цепи:
|
R
ε
|
Неоднородный
участок:
|
3. |
Полная цепь (замкнутая):
|