Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лабы по эл-магнетизму.doc
Скачиваний:
24
Добавлен:
06.05.2019
Размер:
2.78 Mб
Скачать

Контрольные вопросы

  1. На какие типы делятся вещества по своим магнитным свойствам?

  2. Что такое магнитная проницаемость среды?

  3. Объясните процессы, происходящие с диа- и парамагнетиками при помещении их в магнитное поле.

  4. Что такое магнитный гистерезис? Объясните механизм образования петли гистерезиса.

  5. Что означает насыщение ферромагнетика?

  6. Какие процессы обуславливают затраты энергии на перемагничивание ферромагнетика?

  7. Что понимают под «точкой Кюри»?

  8. Опишите метод, применяемый в данной работе для изучения намагничивания ферромагнетика.

  9. Что такое коэрцитивная сила? Какой физический смысл она имеет?

VI. Электромагнитные колебания

6.1. Колебательный контур

В электрической цепи, состоящей из последовательно соединенных конденсатора С, катушки индуктивности L и омического сопротивления R (рис. 6.1), могут возникать электромагнитные колебания. Поэтому такую цепь называют колебательным контуром.

Т ок, текущий в колебательном контуре, является переменным i = f (t). Закон Ома и вытекающие из него правила Кирхгофа были установлены для постоянного тока. Однако они остаются справедливыми для мгновенных значений переменного тока и напряжения, если только их изменения происходят не слишком быстро.

Если мгновенные значения I и U во всех сечениях цепи будут практически одинаковыми, то такие токи называются квазистационарными.

Рассмотрим колебания, происходящие в идеализированном контуре, сопротивление которого пренебрежимо мало (R ≈ 0). Для возбуждения в контуре колебаний конденсатор предварительно заряжают, сообщая его обкладкам заряды ±q. При этом вся энергия колебательного контура сосредоточена в конденсаторе и равна . Если замкнуть конденсатор на катушку индуктивности, он начнет разряжаться, и в контуре потечет возрастающий со временем ток I. Электрическая энергия конденсатора начнет превращаться в магнитную энергию катушки . Когда конденсатор полностью разрядится, ток в цепи достигнет максимума. С этого момента ток, не меняя направление, начнет убывать, но из-за ЭДС самоиндукции он прекратится не сразу.

В колебательном контуре (Рис. 6.1) будут происходить свободные электромагнитные колебания.

Рассмотрим идеальный случай: R = 0.

1 стадия: В начальный момент времени t = 0 зарядим конденсатор.

2 стадия: Замкнув конденсатор на катушку, конденсатор начнет разряжаться и в контуре потечет ток. Из-за явления самоиндукции ток в контуре постепенно увеличивается и сила тока I достигнет максимума в момент времени t = Т/4, когда заряд на конденсаторе станет равным нулю q = 0. Энергия электрического поля будет уменьшаться, но зато возникает всё возрастающая энергия магнитного поля. Т.к. R = 0, энергия не расходуется на нагревание проводов и полная энергия сохраняется:

I

t = 0 t = Т/4 t = Т/2 t = ¾Т t = Т

U = max U = 0 U = max U = 0 U = max

I = 0 I = max I = 0 I = max I = 0

3 стадия: Далее ток I уменьшается из-за явления самоиндукции, и когда U = max, I = 0.

4 и 5 стадии: Затем те же процессы протекают в обратном направлении, после чего система приходит в первоначальное состояние.

Таким образом, периодически изменяются q, U, I. Колебания сопровождаются взаимными превращениями энергии электрического и магнитного полей.

Найдем уравнение колебаний идеального колебательного контура:

.

Учитывая, что получим где -собственная частота:

(6.1)

дифференциальное уравнение собственных колебаний (R = 0).

- формула Томсона.

Решение уравнения (6.1):

q = qmSin0 t + α). (6.2)

Т аким образом, ток опережает по фазе напряжение на конденсаторе на π/2.