Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы к экзамену. Линейная алгебра.doc
Скачиваний:
41
Добавлен:
26.04.2019
Размер:
3.48 Mб
Скачать

Оптимальный план и оптимум

Как найти оптимальный план? Обратимся к целевой функции. Приравняем ее какой-нибудь константе d

.

Мы получили уравнение, определяющее некоторую прямую на координатной плоскости. Все точки этой прямой соответствуют одному и тому же значению целевой функции, равному d, одному и тому же уровню значений. Такая прямая называется линией уровня целевой функции.

При изменении величины d мы получим другую линию уровня, параллельную предыдущей. При увеличении d линия будет смещаться параллельно в одну сторону, при уменьшении - в другую.

Придавая величине d разные конкретные числовые значения, можно понять, какое направление смещения линии уровня соответствует увеличению значения целевой функции, а какое - уменьшению.

 Однако, существует более простой способ. А именно, изобразим в координатной плоскости вектор, начало которого находится в начале координат, а конец которого упирается в точку с координатами (c1, c2), где c1 и c2 - коэффициенты при переменных в целевой функции. Это градиент целевой функции. Этот вектор-градиент перпендикулярен всем линиям уровня целевой функции, а его направление указывает направление роста значений функции.

На Рис. 2 .1изображен градиент, направленный внутрь первого координатного угла. Это означает, что коэффициенты c1 и c2 положительны. Разумеется, это не во всех задачах так, в разных задачах знаки этих коэффициентов могут быть различными. Начало градиента всегда располагается в начале координат, но направлен он может быть в любую сторону.

 Для того чтобы найти оптимальный план, нужно взять одну из линий уровня, пересекающих область допустимых планов. Затем следует параллельно смещать эту линию в направлении градиента до ее . Крайним называется положение линии уровня, удовлетворяющее двум условиям: во-первых, в этом положении линия уровня еще пересекает область допустимых планов, во-вторых, при любом ее дальнейшем смещении она перестает пересекать эту область.

Точки области допустимых планов, лежащие на одной линии уровня, соответствуют одному и тому же допустимому значению целевой функции. Смещение линии уровня в направлении градиента соответствует росту значений целевой функции. Крайнее положение линии уровня соответствует максимальному допустимому значению целевой функции, то есть оптимуму. Все точки, находящиеся в пересечении области допустимых планов и линии уровня в ее крайнем положении, являются искомыми оптимальными планами.

 На Рис. 2 .1множество оптимальных планов состоит из одной единственной точки - вершины многоугольника, обозначенной посредством X*max .

Заметим сразу, что если бы требовалось решать задачу на минимум той же самой целевой функции, то смещать линию уровня следовало бы в направлении уменьшения ее значений, то есть в направлении, противоположном градиенту (или, как иногда говорят, в направлении антиградиента). Линия уровня в новом крайнем положении прошла бы через точку X*min (Рис. 2 .1).

Если изменить знаки коэффициентов целевой функции c1 и c2 на противоположные, то градиент развернется на 180о, то есть совпадет с антиградиентом первоначальной целевой функции. Если отыскивать минимум этой новой целевой функции с измененными знаками, то следует смещать линию уровня в направлении антиградиента по отношению к новому градиенту, то есть в направлении прежнего градиента. Мы убеждается еще раз, что решение задачи на минимум для целевой функции с измененными знаками соответствует задаче на максимум исходной целевой функции.