Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций по ТВМС.doc
Скачиваний:
119
Добавлен:
23.04.2019
Размер:
5.02 Mб
Скачать

Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии

Пусть количественный признак X генеральной совокупности распределен нормально, причем среднее квадратическое отклонение  этого распределения неизвестно. Требуется оценить неизвестное математическое ожидание с помощью доверительных интервалов.

Оказывается, что по данным выборки можно построить случайную величину

,

которая имеет распределение Стьюдента с степенями свободы. В последнем выражении - - выборочное среднее, - исправленное среднее квадратическое отклонение, - объем выборки; возможные значения случайной величины T мы будем обозначать через t. Плотность распределения Стьюдента имеет вид

,

где некоторая постоянная, выражающаяся через гамма – функции.

Несколько слов о распределении Стьюдента. Пусть - независимые стандартные нормальные величины. Тогда случайная величина

имеет распределение Стьюдента (В. Госсет) с степенями свободы. При росте числа степеней свободы распределение Стьюдента стремится к нормальному распределению и уже при использование нормального распределения дает хорошие результаты.

Как видно, распределение Стьюдента определяется параметром n – объемом выборки (или, что то же самое – числом степеней свободы ) и не зависит от неизвестных параметров . Поскольку - четная функция от t , то вероятность выполнения неравенства

определяется следующим образом:

.

Заменив неравенство в круглых скобках двойным неравенством, получим выражение для искомого доверительного интервала

Итак, с помощью распределения Стьюдента найден доверительный интервал , покрывающий неизвестный параметр a с надежностью . По таблице распределения Стьюдента и заданным n и можно найти и используя найденные по выборке и , , можно определить доверительный интервал.

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n = 16 найдены генеральное среднее и исправленное среднее квадратическое отклонение . Требуется оценить неизвестное математическое ожидание при помощи доверительного интервала с надежностью 0,95.

Решение. Найдем по таблице распределения Стьюдента, используя значения . Этот параметр оказывается равным 2,13. Найдем границы доверительного интервала:

То есть с надежностью 0,95 неизвестный параметр a заключен в доверительном интервале

Можно показать, что при возрастании объема выборки n распределение Стьюдента стремится к нормальному. Поэтому практически при n > 30 можно вместо него пользоваться нормальным распределением. При малых n это приводит к значительным ошибкам.

. Доверительный интервал для оценки среднего квадратического отклонения  нормального распределения

Пусть количественный признак X генеральной совокупности распределен нормально и требуется оценить неизвестное генеральное среднее квадратическое отклонение  по исправленному выборочному среднему квадратическому отклонению s. Найдем доверительные интервалы, покрывающие параметр  с заданной надежностью .

Потребуем, чтобы выполнялось соотношение

или

Преобразуем двойное неравенство в равносильное неравенство и обозначим  / s = q. Имеем

(A)

и необходимо найти q. С этой целью введем в рассмотрение случайную величину

Оказывается, величина распределена по закону с n – 1 степенями свободы.

Несколько слов о распределении хи-квадрат. Если - независимые стандартные нормальные величины, то говорят, что случайная величина

имеет распределение хи-квадрат с степенями свободы.

Плотность распределения  имеет вид

Это распределение не зависит от оцениваемого параметра , а зависит только от объема выборки n.

Преобразуем неравенство (A) так, чтобы оно приняло вид . Вероятность этого неравенства равна заданной вероятности , т.е.

.

Предполагая, что q < 1, перепишем (A) в виде

,

далее, умножим все члены неравенства на :

или .

Вероятность того, что это неравенство, а также равносильное ему неравенство (A) будет справедливо, равна

.

Из этого уравнения можно по заданным найти , используя имеющиеся расчетные таблицы. Вычислив по выборке и найдя по таблице , получим искомый интервал (A1), покрывающий  с заданной надежностью .

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n = 25 найдено исправленное среднее квадратическое отклонение s = 0.8. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение  с надежностью 0,95.

Решение. По заданным по таблице находим значение q = 0.32. Искомый доверительный интервал есть

.

Мы предполагали, что q < 1. Если это не так, то мы придем к соотношениям

,

и значение q >1 может быть найдено из уравнения