Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций по ТВМС.doc
Скачиваний:
119
Добавлен:
23.04.2019
Размер:
5.02 Mб
Скачать

Плотность распределения вероятностей.

Для непрерывных случайных величин, кроме функции распределения вводится также понятие плотности распределения вероятностей, или плотности вероятности.

Плотностью распределения вероятностей непрерывной случайной величины называется производная от ее функции распределения

.

Зная плотность распределения вероятностей, можно найти функцию распределения, интегрируя плотность вероятности в общем случае от до рассматриваемого значения , т.е.

.

Свойства плотности распределения вероятностей

Действительно, так как функция распределения неубывающая функция, то ее производная – функция неотрицательная

  1. Несобственный интеграл от плотности распределения вероятностей в пределах от до равен единице:

Действительно, данный несобственный интеграл выражает вероятность события, состоящего в том, что случайная величина примет значение, принадлежащее интервалу . Т.к. такое событие достоверно, то его вероятность равна единице.

Вероятностный смысл плотности распределения вероятностей: вероятность того, что случайная величина примет значение, принадлежащее интервалу (x, x+dx) приближенно равна произведению плотности вероятности в точке x на ширину интервала dx.

Пример. Пусть дальность полета снаряда при определенной установке прицела описывается плотностью распределения вида

Какова вероятность того, что при одном выстреле будет получен перелет в пределах от 10 д0 20 метров? Ответ:

Лекция 7. Основные параметры распределений одномерных случайных величин.

Во многих практических случаях информация о случайной величине, которую дают закон распределения, функция распределения или плотность вероятностей, является избыточной. Часто проще и удобнее пользоваться числами, которые описывают случайную величину суммарно. К числу наиболее важных из таких числовых характеристик случайных величин относятся математическое ожидание, дисперсия и среднее квадратическое отклонение.

Математическое ожидание случайной величины

Математическое ожидание характеризует среднее ожидаемое значение случайной величины, т.е. приближенно равно ее среднему значению (вероятностный смысл математического ожидания). Иногда знания этой характеристики достаточно для решения задачи. Например, при оценке покупательной способности населения вполне может хватить знания среднего дохода, при анализе выгодности двух видов деятельности можно ограничиться сравнением их средних прибыльностей. Знание того, что выпускники данного университета зарабатывают в среднем больше выпускников другого, может послужить основанием для принятия решения о поступлении в данный ВУЗ и т.п.

Математическое ожидание дискретной случайной величины определяется соотношением:

, где .

Математическое ожидание непрерывной случайной величины равно

где - плотность вероятности.

Свойства математического ожидания

Прежде чем формулировать свойства математического ожидания необходимо пояснить смысл арифметических операций , , и т.п., где и – дискретные случайные величины.

Например, под суммой понимается случайная величина , значениями которой являются все допустимые суммы , где и – все возможные значения соответственно случайных величин и .