
- •Ответы по деталям машин
- •1.1. Основные критерии работоспособности и расчета деталей машин:
- •1.2.Резьбовые соединения, их достоинства и недостатки. Основные детали резьбовых соединений: винт, гайка, шпилька, стопорные устройства. Схемы соединений с помощью этих устройств:
- •1.3.Типы резьб и область их применения. Основные геометрические параметры резьбы. Понятие о расчетном диаметре крепежных резьб:
- •1.4. Вывод расчетных зависимостей для определения момента сопротивления в резьбе и момента трения на торце гайки (головки болта):
- •1.5. Условие самоторможения винтовой пары:
- •1.6. Коэффициент полезного действия винтовой пары. Способы повышения кпд винтовой пары:
- •1.7. Распределение осевой силы по виткам гайки. Конструктивные меры, применяемые для улучшения распределения нагрузки по виткам:
- •1.8. Расчет на прочность стержня, нагруженного силой затяжки и моментом сопротивления в резьбе (прочность затянутого болта):
- •1.9. Расчет резьбовых соединений, нагруженных сдвигающей силой при установке винтов с зазором и без зазора:
- •1.10. Расчет резьбовых соединений, нагруженных моментом сил в плоскости стыка при установке винтов с зазором и без зазора:
- •1.11. Расчет резьбовых соединений, нагруженных предварительной силой затяжки и последующей внешней осевой силой:
- •1.12. Расчет резьбовых соединений, нагруженных отрывающей силой и опрокидывающим моментом:
- •1.13. Расчет резьбовых соединений, работающих при переменной нагрузке. Конструктивные и технологические мероприятия по повышению долговечности винтов, работающих при переменной нагрузке:
- •1.14. Материалы резьбовых деталей и допускаемые напряжения:
- •1.15. Сварные соединения, достоинства и недостатки, область применения. Типы сварных швов, виды сварных соединений, методы сварки:
- •1.17. Сварные нахлесточные соединения. Типы швов. Распределение напряжений по длине флангового шва, рекомендуемые пределы длин фланговых швов:
- •1.19. Тавровые соединения. Расчет соединений нагруженных силой, силой и изгибающим моментом:
- •1.20. Допускаемые напряжения при расчете сварных соединений:
- •1.21. Расчет сварных соединений, работающих при переменной нагрузке. Формулы для расчета и выбор допускаемых напряжений:
- •1.22. Заклепочные соединения, достоинства и недостатки, область применения. Основные типы заклепок и заклепочных соединений:
- •1.24. Соединения деталей с натягом, достоинства и недостатки, область применения. Способы получения соединений. Принцип работы (передачи нагрузки) соединения с натягом.
- •1.26. Связь давления на поверхности контакта с расчетным натягом в соединении (Ляме).
- •1.27. Понятие о расчетном и измеренном натягах. Влияние микронеровностей на нагрузочную способность соединений с натягом.
- •1.28. Потребная сила запрессовки. Потребная температура нагрева охватывающей (охлаждения охватывающей) деталей, необходимая для обеспечения свободной сборки соединения.
- •1.29. Напряженное состояние деталей в соединении с натягом. Проверка их прочности.
- •1.30. Шпоночные соединения, достоинства и недостатки, область применения. Типы призматических шпонок, способы изготовления шпоночных пазов.
- •1.31. Соединения с призматическими шпонками, конструкция и метод расчета.
- •1.32. Соединения с сегментными шпонками, конструкция и метод расчета.
- •1.33. Типы шлицевых соединений, их сравнительная оценка. Область применения. Способы центрирования деталей шлицевых соединений, обоснование выбора способа центрирования.
- •1.34. Критерии работоспособности шлицевых соединений. Метод расчета шлицевых соединений.
- •1.35. Выбор допускаемых напряжений для шпоночных и шлицевых соединений.
- •1.36. Передачи винт-гайка, назначение и область применения, достоинства и недостатки. Виды передач, пример конструкции, материалы деталей передач.
- •1.37. Критерии работоспособности передачи винт-гайка – скольжения. Расчет передачи по удельному давлению в резьбе и расчет на прочность и устойчивость:
- •2.1 Общие сведения о передачах: назначение, область применения. Краткая классификация передач, их основные характеристики. Принцип работы, кинематика, сравнительная оценка различных типов передач.
- •Основные характеристики передач
- •2.2. Контактные напряжения. Виды разрушения, вызываемые контактными напряжениями. Какие передачи рассчитываются по сопротивлению контактной усталости?
- •2.3. Зубчатые передачи, достоинства и недостатки. Основные виды зубчатых передач. Основные параметры зубчатых колес. Передаточное число. Материалы и термообработка для зубчатых колес.
- •Основные виды зубчатых передач
- •Достоинства и недостатки
- •Основные характеристики передач
- •Основные параметры зубчатых колес
- •Передаточное число
- •Материалы и термообработка для зубчатых колес
- •2.4. Силы в зацеплении цилиндрических прямозубых и косозубых колес.
- •2.5. Основные причины выхода из строя зубчатых колес и методы расчета, обеспечивающие работоспособность зубчатых передач. Основные виды разрушения зубьев
- •Основные критерии работоспособности
- •2.6. Понятие о коэффициенте расчетной нагрузки для зубчатых передач. Коэффициенты концентрации и динамичности нагрузки, их физический смысл: от каких параметров зависят величины этих коэффициентов.
- •2.7. Расчет зубьев цилиндрических прямозубых колес на сопротивление контактной усталости. Вывод расчетной зависимости и ее анализ.
- •2.8. Расчет зубьев цилиндрических прямозубых колес на изгибную усталость. Вывод расчетной зависимости и ее анализ.
- •2.10. Особенности геометрии и условий работы косозубых цилиндрических передач. Длина линии контакта и распределение нагрузки по длине контакта.
- •Как определить коэффициент, учитывающий форму зуба для косозубого цилиндрического зубчатого колеса?
- •Особенности расчета косозубых и шевронных колес на сопротивление контактной и изгибной усталости
- •Чем обуславливается повышение нагрузочной способности косозубых и шевронных передач по сравнению с прямозубыми?
- •Типы зубчатых колес.
- •Основные геометрические параметры конического зубчатого колеса. Передаточное число конической зубчатой передачи.
- •2.14. Силы, действующие в зацеплении прямозубых конических колес. Силы, действующие в зацеплении прямозубых конических колес.
- •Как учитывают при их выборе переменный режим и заданный срок работы передачи?
- •2 .18. Червячные передачи. Достоинства и недостатки, область применения. Принцип действия. Червячные передачи.
- •Достоинства и недостатки, область применения.
- •2.19. Основные параметры червячных передач (мощность, передаточное отношение, модуль, межосевое расстояние).
- •2.20. Геометрия червячных передач без смещения исходного производящего контура.
- •2.21. Червячные передачи со смещением исходного производящего контура, коэффициенты смещения.
- •2.22 Типы червяков, технология изготовления червяков и червячных колес.
- •2.23. Скольжение в червячной передаче, кпд передачи, способы повышения кпд.
- •2.24. Силы в зацеплении червячной передачи.
- •2.25. Причины выхода из строя червячных передач и критерии их работоспособности.
- •2.26. Выбор материалов для червяка и венца червячного колеса.
- •2.27. Расчет зубьев червячных передач на сопротивление контактной и изгибной усталости. Понятие о расчетной нагрузке. Расчет червячной передачи по контактным напряжениям
- •Расчет червячной передачи по напряжениям изгиба зуба колеса
- •2.28. Выбор допускаемых контактных напряжений при расчете червячных передач.
- •2.29. Тепловой расчет и способы охлаждения червячных передач.
- •2.30. Способы смазывания червячных передач, типы смазочных материалов и их объемы.
- •3.1. Валы и оси – назначение, опорные части валов и осей. Конструкции основных типов цапф.
- •3.2. Посадочные поверхности и переходные участки валов.
- •3.3. Форма вала по длине и способы осевой фиксации деталей на валу.
- •3.4. Материалы и обработка валов и осей.
- •3.5. Критерии работоспособности валов и осей.
- •3.6. Расчетные схемы валов и осей.
- •3.7. Изгибная и крутильная жесткость вала. Параметры их оценки.
- •3.8. Проектный расчет валов.
- •3.9. Условия, определяющие опасное сечение вала.
- •3.10. Расчеты валов по статической прочности.
- •3.11. Расчеты валов на сопротивление усталости. Конструктивные и технологические способы повышения сопротивления усталости валов.
- •3.12. Расчеты валов на жесткость.
- •3.13. Расчеты валов на виброустойчивость.
- •3.14. Подшипники качения – назначение , достоинства и недостатки. Классификация, система условных обозначений подшипников качения.
- •3.15. Кинематика подшипников качения.
- •3.16. Распределение радиальной нагрузки между телами качения в радиальном однорядном шарикоподшипнике.
- •3.17. Контактные напряжения в деталях подшипника.
- •3.18. Причины выхода из строя подшипников качения.
- •3.19. Подбор подшипников качения по статической грузоподъемности. В каких случаях подбирают подшипники качения по статической грузоподъемности.
- •3.20. Назначение радиальных подшипников качения, конструкция. Подбор этих подшипников по заданным нагрузке и ресурсу l.
- •3.21. Назначение радиально-упорных подшипников качения, конструкция. Подбор этих подшипников по заданным нагрузке и ресурсу l.
- •3.22. Назначение упорных подшипников качения, конструкция. Подбор этих подшипников по заданным нагрузке и ресурсу l.
- •3.23. Подбор подшипников качения на заданный ресурс при переменных режимах нагружения.
- •3.24. Как в расчетах подшипников качения на ресурс учитывается требуемый повышенный уровень надежности.
- •3.25. Для каких типов подшипников качения определяется эквивалентная динамическая радиальная нагрузка, а для каких – эквивалентная динамическая осевая нагрузка?
- •3.26. Определение эквивалентной динамической радиальной нагрузки для радиальных шариковых и радиально-упорных шариковых и роликовых подшипников качения.
- •3.27. Особенности определения осевых сил, нагружающих радиально-упорные подшипники качения.
- •3.28. Как в расчетах подшипников качения на ресурс учитываются реальные условия эксплуатации.
- •3.29. Для каких условий эксплуатации предназначены шариковые радиальные двухрядные сферические подшипники? Подбор подшипников этого типа по заданным нагрузке и ресурсу l.
- •3.30. Почему целесообразно конструировать опоры качения так, чтобы относительно радиальной нагрузки вращалось внутреннее, а не наружное кольцо подшипника?
- •3.31. Какие подшипники могут использоваться в фиксирующих опорах? Изобразите конструкцию одного из них. Подбор подшипников этого типа по заданным нагрузке и ресурсу l.
- •Конструкция шарикового радиально-упорного подшипника.
- •Подбор этих подшипников по заданным нагрузке и ресурсу l:
- •3.32. Назначение роликовых радиальных подшипников с короткими цилиндрическими роликами, конструкция. Подбор подшипников этого типа по заданным нагрузке и ресурсу l.
- •Подбор подшипников этого типа по заданным нагрузке и ресурсу l.
- •3.33. Понятие статической грузоподъемности подшипников качения. Определение эквивалентной статической радиальной нагрузки для радиальных и радиально-упорных подшипников.
- •3.34. Приводные муфты - назначение и краткая классификация.
- •3.35. Основные характеристики муфт. Расчетный момент приводных муфт.
- •3.36. Назначение глухих муфт. Приведите конструкцию и метод расчета фланцевой (поперечно-свертной) муфты.
- •3.37. Жесткие компенсирующие муфты, назначение, область применения. Какие ошибки изготовления и сборки и каким образом компенсируют эти муфты? Пример конструкции жесткой компенсирующей муфты.
- •Зубчатые муфты.
- •Другие жёсткие компенсирующие муфты.
- •М уфта упругая втулочно-пальцевая (мувп).
- •3.40. Предохранительные муфты, назначение, область применения. Основные требования, предъявляемые к предохранительным муфтам. Пример конструкции и метод расчета муфты с разрушающимся элементом.
2.29. Тепловой расчет и способы охлаждения червячных передач.
Значительное тепловыделение при работе
червячной передачи приводит к нагреву
масла. Превышение предельной для масла
температуры
приводит
к потере им защитных свойств и опасности
заедания в передаче. Современные
смазочные материалы сохраняют свои
свойства до
Расчет при установившемся тепловом
состоянии проводят, по уравнению
теплового баланса:
(12.44)
где
— количество теплоты, Дж, выделяющейся
при непрерывной работе передачи в
единицу времени, Дж/с;
—
количество теплоты, отводимой с
поверхности корпуса передачи и через
основание в единицу времени
(12.45)
где
—
КПД передачи без учета потерь на привод
вентилятора;
P1— мощность на червяке, кВт.
(12.46)
где
—
коэффициент теплопередачи с поверхности
корпуса, равный 12... 18 Вт/(
);—
соответственно температура масла
и окружающего воздуха, °С; А —
поверхность теплопередачи корпуса
передачи (без учета площади основания),
м2;
—коэффициент, учитывающий теплоотвод
через основание, при установке корпуса
на металлическом основании
достигает
0,3 , при бетонном основании
Из выражений (12.44), (12.45) и (12.46) определяют температуру масла
(12.47)
Если
то
предусматривают отвод избыточной
теплоты. Этого достигают оребрением
корпуса (увеличивается А); искусственной
вентиляцией (возрастает
);
водяным охлаждением масла (снижается
).
Расположение ребер выбирают из условия лучшего их обтекания воздухом, при естественном охлаждении ребра располагают вертикально, при искусственном — вдоль направления потока воздуха от вентилятора.
Вентилятор устанавливают на валу
червяка, коэффициент теплоотдачи
обдуваемых стенок достигает 30 Вт/(
).
Водяное охлаждение обеспечивает отвод
большого количества теплоты, коэффициент
теплоотдачи с поверхности труб до 200
Вт/(
).
2.30. Способы смазывания червячных передач, типы смазочных материалов и их объемы.
Для смазывания передач широко применяют картерную систему. В корпус редуктора или коробки передач заливают масло так, чтобы венцы колес были в него погружены. Колеса при вращении увлекают масло, разбрызгивая его внутри корпуса. Масло попадает на внутренние стенки корпуса, откуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которая покрывает поверхность расположенных внутри корпуса деталей.
Картерное смазывание применяют при окружной скорости зубчатых колес и червяков от 0,3 до 12,5 м/с. При более высоких скоростях масло сбрасывает с зубьев центробежная сила и зацепление работает при недостаточном смазывании. Кроме того, заметно возрастают потери мощности на перемешивание масла, повышается его температура.
Выбор смазочного материала основан на опыте эксплуатации машин. . Преимущественное применение имеют масла. Принцип назначения сорта масла следующий: чем выше окружная скорость колеса, тем меньше должна быть вязкость масла и чем выше контактные давления в зацеплении, тем большей вязкостью должно обладать масло. Поэтому требуемую вязкость масла определяют в зависимости от контактного напряжения и окружной скорости колес .
Обозначение индустриальных масел состоит из четырех знаков, каждый из которых обозначает:
первый (И) —индустриальное,
второй —принадлежность к группе по назначению (Г — для гидравлических систем, Т — тяжелонагруженные узлы), третий — принадлежность к группе по эксплуатационным свойствам:
{А — масло без присадок,
С —масло с антиокислительными, антикоррозионными и противоизносными присадками,
Д —масло с антиокислительными, антикоррозионными, противоизносными и противозадирными присадками), четвертый (число) — класс кинематической вязкости.
Глубину погружения в масло деталей червячного редуктора принимают:
при нижнем расположении червяка hm=(0.1...0.5)da1
при верхнем hm=2m...0.25d2
Однако при частых включениях и кратковременном режиме работы (пуск — останов — пуск) смазывание зацепления оказывается недостаточным. Во избежание этого уровень масла поднимают до зацепления. Если важно уменьшить в червячной передаче тепловыделение и потери мощности (например, при высокой частоте вращения червяка и длительной работе передачи), уровень масла в корпусе понижают. Для смазывания зацепления на червяке устанавливают разбрызгиватели. Масло заливают в этом случае до центра нижнего тела качения подшипника.