
- •2 Билет.
- •3 Билет.
- •Алгоритм Описание
- •Вычитание векторов
- •Умножение вектора на число
- •Свойства линейных операций над векторами
- •Линейные комбинации векторов
- •§ 1. Ориентация пространства. Правые и левые тройки некомпланарных векторов.
- •§ 2. Скалярное произведение векторов.
- •§ 3. Векторное произведение векторов.
- •§4. Смешанное произведение векторов.
- •В координатной форме
- •[Править]Обозначения
- •[Править]Свойства коллинеарности
- •Линейно зависимые и линейно независимые системы векторов
- •1.Двумя точками (а и в).
- •2. Двумя плоскостями (; ).
- •3. Двумя проекциями.
- •Уравнение прямой по точке и вектору нормали
- •Уравнение прямой, проходящей через две точки
- •Уравнение прямой по точке и угловому коэффициенту
- •Уравнение прямой по точке и направляющему вектору
- •Уравнение прямой в отрезках
- •Нормальное уравнение прямой
- •Угол между прямыми на плоскости
- •Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой
- •Расстояние от точки до прямой
- •Расстояние от точки до прямой
- •Угол между прямыми на плоскости
- •Уравнение плоскости
- •Угловой коэффициент в уравнении прямой. Геометрический смысл коэффициента.
- •Расстояние от точки до прямой
- •Взаимное расположение двух плоскостей (формулировки и примеры)
- •Угол между плоскостями
- •Прямая в пространстве
- •Числовые последовательности
- •Арифметические действия над числовыми последовательностями
- •Ограниченные и неограниченные последовательности
- •Бесконечно большие и бесконечно малые последовательности
- •Связь между бесконечно малыми и бесконечно большими последовательностями
- •Оновные свойства бесконечно малых последовательностей
- •Определения
- •[Править]Промежутки монотонности
- •[Править]Примеры
- •Способы определения
- •[Править]Свойства
- •Теорема о вложенных отрезках
- •Односторонний предел по Гейне
- •[Править]Односторонний предел по Коши
- •Теоремы о пределах
- •Второй замечательный предел
- •Исчисление бесконечно малых и больших
- •[Править]Бесконечно малая величина
- •[Править]Бесконечно большая величина
- •[Править]Свойства бесконечно малых
- •[Править]Сравнение бесконечно малых
- •[Править]Определения
- •[Править]Примеры сравнения
- •Определение непрерывности функции
- •Арифметические действия над непрерывными функциями
- •Определение
- •[Править]Существование
- •[Править]Примеры
- •[Править]Свойства
- •Понятие производной
- •Геометрический смысл производной
- •Производные и дифференциалы высших порядков
- •Дифференцируемость
- •[Править]Замечания
- •Дифференцирование функций, заданных параметрически
- •Следствие
- •Доказательство Лагранжа
- •Отношение бесконечно малых
- •[Править]Отношение бесконечно больших
- •Так почему же это является неопределённостью? Править
Второй замечательный предел
или
Доказательство второго замечательного предела:
Доказательство для натуральных значений x [показать]
Зная,
что второй замечательный предел верен
для натуральных значений x, докажем
второй замечательный предел для
вещественных x, то есть докажем, что
.
Рассмотрим два случая:
1.
Пусть
.
Каждое значение x заключено между двумя
положительными целыми числами:
,
где
—
это целая часть x.
Отсюда
следует:
,
поэтому
.
Если
,
то
.
Поэтому, согласно пределу
,
имеем:
.
П
о
признаку (о пределе промежуточной
функции) существования пределов
.
2.
Пусть
.
Сделаем подстановку − x = t,
тогда
.
Из
двух этих случаев вытекает, что
для
вещественного x.
Следствия
для
,
примеры
Билет 33 .
Бесконечно малая (величина) — числовая функция или последовательность, которая стремится к нулю.
Бесконечно большая (величина) — числовая функция или последовательность, которая стремится к бесконечности определённого знака.
Исчисление бесконечно малых и больших
Исчисление бесконечно малых — вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная суммабесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Понятие бесконечно малой величины тесно связано с понятием предела.
[Править]Бесконечно малая величина
Последовательность an называется бесконечно
малой,
если
.
Например, последовательность чисел
—
бесконечно малая.
Функция
называется бесконечно
малой в окрестности точки x0,
если
.
Функция
называется бесконечно
малой на бесконечности,
если
либо
.
Также
бесконечно малой является функция,
представляющая собой разность функции
и её предела, то есть если
,
то f(x)
− a =
α(x),
.
[Править]Бесконечно большая величина
Во
всех приведённых ниже формулах
бесконечность справа от равенства
подразумевается определённого знака
(либо «плюс», либо «минус»). То есть,
например, функцияxsin x,
неограниченная с обеих сторон, не
является бесконечно большой при
.
Последовательность an называется бесконечно
большой,
если
.
Функция
называется бесконечно
большой в окрестности точки x0,
если
.
Функция
называется бесконечно
большой на бесконечности,
если
либо
.
[Править]Свойства бесконечно малых
Сумма конечного числа бесконечно малых — бесконечно малая.
Произведение бесконечно малых — бесконечно малая.
Произведение бесконечно малой последовательности на ограниченную — бесконечно малая. Как следствие, произведение бесконечно малой на константу — бесконечно малая.
Если an — бесконечно малая последовательность, сохраняющая знак, то
— бесконечно большая последовательность.
[Править]Сравнение бесконечно малых
Отношение
бесконечно малых величин образует
так называемую неопределённость
.
[Править]Определения
Допустим,
у нас есть бесконечно малые при одном
и том же
величины α(x) и β(x) (либо,
что не важно для определения, бесконечно
малые последовательности).
Если
, то β — бесконечно малая высшего порядка малости, чем α. Обозначают β = o(α).
Если
, то β — бесконечно малая низшего порядка малости, чем α. Соответственно α = o(β).
Если
(предел конечен и не равен 0), то α и β являются бесконечно малыми величинами одного порядка малости.
Это обозначается как β = O(α) или α = O(β) (в силу симметричности данного отношения).
Если
(предел конечен и не равен 0), то бесконечно малая величина β имеет m-й порядок малости относительно бесконечно малой α.
Для вычисления подобных пределов удобно использовать правило Лопиталя.