Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рудой В.М. - СИСТЕМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ.docx
Скачиваний:
210
Добавлен:
15.11.2018
Размер:
3.14 Mб
Скачать

Фазовая модуляция

При фазовой модуляции (ФМ) под действием модулирующего сигнала изменяется фаза несущего колебания (1.1), а его амплитуда остается постоянной. Для ФМ сигнала формула (1.1), с учетом (1.4) преобразуется к виду

(1.17)

где - индекс фазовой девиации.

В формуле (1.17) начальная фаза отброшена, так как она является пос-тоянной величиной. Как видно из формулы, модулирующая функция здесь входит под знак косинуса. Выражение (1.17) для ФМ сигнала и (1.9) для ЧМ сигнала отличаются только тем, что в первом случае под знаком косинуса находится сама модулирующая функция, а во втором случае - ее интеграл.

Для непрерывного ФМ сигнала ширина боковой полосы, по аналогии с ЧМ сигналом, находится как произведение индекса фазовой девиации на модулирующую частоту, т.е. , а полная ширина спектра равна . Если для ЧМ сигнала ширина спектра не зависела от значения , то для ФМ сигнала она зависит от него. В этом и состоит различие спектров ФМ и ЧМ сигналов.

Фазовая модуляция не нашла практического применения для передачи непрерывных сообщений. Зато ее широко применяют при передаче дискретных сообщений.

При кодировании дискретных сообщений двоичным кодом (1,0) фазовую модуляцию называют фазовой манипуляцией. Поскольку фазовая манипу-ляция широко применяется в теле­графных и телекодовых каналах связи, она получила название фазового телеграфирования (ФТ),

Различают несколько способов фазового телеграфирования:

- однократное (ФТ);

- многократное (МФТ);

- относительное (ОФТ).

При ФТ фаза несущего колебания меняется скачком на 180° при переходе от посылки ( 1 ) к паузе ( 0 ), и наоборот (рис.1.17). Фазовую телеграфию называют режимом работы с активной паузой.

рис.1.17

Сигналы МФТ используются тогда, когда по каналу связи пере­даются одновременно n сообщений. Частным случаем МФТ является двойное фазовое телеграфирование (ДФТ). Здесь есть прямая анало­гия с сигналами двойного частотного телеграфирования (ДЧТ). Но там последовательно передавали одну из четырех частот ( или ), а при ДФТ передаются колебания одной и той же частоты, но с четырьмя различными фазами ( или ). Если нужно передавать n сообщений, то понадо-бится сформировать коле­бания с n - фазами. Эти фазы находятся по формуле .

В чистом виде сигналы ФТ не применяются из-за явления так называемой "обратной работы". Дело в том, что в отличие от сигна­лов AT и ЧТ прием сигналов ФТ требует подачи на демодулятор опор­ного напряжения синхронного и синфазного с принимаемом высокочас­тотным сигналом. Если произойдет случайный скачок фазы у сигнала или опорного напряжения, то все посылки станут паузами, а паузы - посылками. Это и есть явление “обратной работы”. Для того чтобы избежать этого недостатка, отечествен-ным ученым Н.Т. Петровичем был предложен способ относительного фазового телеграфирования (ОФТ). Он предусматривает опре­деленный алгоритм кодирования и декодирования сигналов, благода­ря чему явление обратной работы исключается. По своим основным параметрам сигналы ОФТ ничем не отличаются от сигналов ФТ.

Принцип ОФТ заключается в сравнении фаз несущего колебания n – й и предыдущий (n –1)–й посылок. В результате носителем информации являет-ся не фаза принимаемой посылки, а новый сигнал, полученный по опреде-ленному правилу при сравнению фаз последующей и предыдущей посылок. Как правило, этот сигнал формируется до фазового манипулятора, поэтому сигналы на его выходе по виду ничем не отличаются от сигналов ФТ.

При ОФТ в случае передачи бестоковой посылки фаза ее колебаний остается такой же, как и предыдущей посылки, а при передачи токовой посылки изменяется на 180°. В принципе, это правило можно изменить на противоположенное. Но независимо от правила перекодирования в начале сеанса связи нужно передавать вспомогательный сигнал для определения фазы колебаний первой посылки.

Алгоритм перекодирования сигнала на передающей стороне можно записать в виде

(1.18)

где - п-я посылка;

- (n –1)-я посылка;

- формируемая в результате перекодирования посылка.

Пользуясь (1.18), легко показать что исходная последовательность =101101001 в результате перекодирования дает последовательность =110110001. Эта операция иллюстрируется рис. 1.18. Технически перекодирование можно осуществить по схеме, приведенной на рис. 1.19. Посылки, поступающие на манипулятор фазы, одновременно задерживаются на время в элементе задержки и подаются на сумматор по модулю два, где и происходит их перекодирование. В модуляторе фаза несущего колебания изменяется только при изменении полярности посылок.

рис.1.18

На приемной стороне для восстановления исходного сообщения необходимо произвести операцию декодирования по формуле

(1.19)

Эту операцию можно реализовать, используя схему, приведенную на рис. 1.20.

рис.1.19 рис.1.20 рис.1.21

Нетрудно показать, что принятая в этом случае последовательность будет преобразована в исходную последовательность 101101001.

На практике обработку принимаемого сигнала часто ведут не по низкой, а по высокой частоте. При этом посылки переменного тока поступают на входы фазового детектора и схемы задержки на время , а с нее через фазовращатель ФВ – на другой вход ФД (рис. 1.21). В фазовом детекторе роль опорного напряжения для п-й посылки играет (п – 1)-я посылка. В результате сравнения последующей высокочастотной посылки с предыдущей формируется исходная кодовая комбинация.

Выбранные алгоритмы перекодирования и декодирования сигналов практически устраняют «обратную работу», характерную для ФТ. Изменение полярности посылок на входе сумматора по модулю два не изменяет полярности выходных сигналов, за исключением двух посылок, непосредст-венно примыкаемых к моменту скачка фазы.

Вид спектров сигнала ОФТ зависит от способа сравнения посылок на приемном конце, т.е. от того, каким способом обрабатывается принятый сигнал – путем сравнения полярностей или путем сравнения фаз. Способ сравнения фаз получил название ОФТ-1, а способ сравнения полярностей ОФТ-2. Что же касается ширины спектра сигналов ОФТ-1 и ОФТ-2, то они почти не отличаются от спектра сигналов ФТ.

При ОФТ, как при ФТ, возможна реализация многократного телеграфи-рования и, в частности, двукратного ОФТ (ДОФТ). Для этого необходимо на передающей стороне расщепить несущее колебание на два колебания со сдвигами фаз относительно исходного на . На приемном конце эти колебания анализируются по способу сравнения фаз (ДОФТ-1) или полярностей (ДОФТ-2).

Следует отметить, что в каналах относительного фазового телеграфирования нужно обеспечит высокую стабильность частоты колебаний, причем эти требования возрастают с повышением рабочей частоты и скорости телеграфирования.

В настоящее время методы относительного фазового телеграфирования находят все большее применение в ряде отечественных и зарубежных систем радиосвязи.

В отличие от сигналов ЧТ, где для передачи информации ис­пользуются колебания двух частот, сигналы ОФТ передаются колеба­нием только одной частоты, как при AT. Отсюда следует, что шири­на спектра сигналов ОФТ и AT совпадает. Различие состоит лишь в уровнях гармонии. У сигнала ОФТ амплитуды гармоник зависят от значения индекса фазовой девиации .

Спектр сигнала при многократном фазовом телеграфировании по ширине совпадает со спектром сигнала ОФТ. Вторым преимуществом сигналов фазовой телеграфии является работа с активной паузой, при которой лучше реализуется мощность сигнала. И, наконец, третьим преимуществом является то, что за счет когерентной обработки сигналов фазового телеграфирования на приемной стороне их уровень по сравнению с сигналами АТ возрастает в два раза, что эквивалентно увеличению отношения сигнал/помеха по мощности в четыре раза.

Узкополосность сигналов ОФТ и их хорошие энергетические показатели обеспечивают системам связи с относительным фазовым телеграфированием высокую помехоустойчивость, превышающую помехоустойчивость систем связи с ЧТ, а тем более, с АТ. Поэтому сигналы ОФТ считаются весьма перспективными.