
- •§ 1. Силы, действующие на петлю с током; энергия диполя
- •§ 2. Механическая и электрическая энергии
- •§ 3. Энергия постоянных токов
- •§ 5. Векторный потенциал и квантовая механика
- •§ 6. Что истинно в статике, но ложно в динамике?
- •Глава 16
- •§ 2. Трансформаторы и индуктивности
- •§ 3. Силы, действующие на индуцируемые токи
- •§ 4. Электротехника
- •Глава 17
- •§ 2. Исключения из «правила потока»
- •§ 3. Ускорение частицы в индуцированном электрическом поле; бетатрон
- •§ 4. Парадокс
- •§ 5. Генератор переменного тока
- •§ 6. Взаимная индукция
- •§ 7. Самоиндукция
- •§ 8. Индуктивность и магнитная энергия
- •Глава 18 уравнения максвелла
- •Уравнения Максвелла
- •Закон силы
- •Гравитация
- •§ 2. Что дает добавка
- •§ 3. Все о классической физике
- •§ 4. Передвигающееся поле
- •§ 5. Скорость света
- •§ 6. Решение уравнений Максвелла; потенциалы и волновое уравнение
- •I'лавa 19
- •Добавление, сделанное после лекции
- •Глава 20
- •§ 2. Трехмерные волны
- •§ 3. Научное воображение
- •§ 4. Сферические волны
- •Глава 21
- •§ 2. Сферические волны от точечного источника
- •§ 3. Общее peшeниe уравнений Максвелла
- •§ 4. Поля колеблющегося диполя
- •§5. Потенциалы движущегося заряда; общее решение Льенара и Вихерта
- •§ 6. Потенциалы заряда, движущегося с постоянной скоростью; формула Лоренца
- •Глава 22
- •§ 2. Генераторы
- •§ 3. Сети идеальных элементов; правила Кирхгофа
- •§ 4. Эквивалентные контуры
- •§ 5. Энергия
- •§ 6. Лестничная сеть
- •§ 7. Фильтры
- •§ 8. Другие элементы цепи
- •Глава 23 полые резонаторы
- •§ 2. Конденсатор на больших частотах
- •§ 3. Резонансная полость
- •§ 4. Собственные колебания полости
- •§ 5. Полости и резонансные контуры
- •Глава 24
- •§ 2. Прямоугольный волновод
- •§ 3. Граничная частота
- •§ 4. Скорость волн в волноводе
- •§ 5. Как наблюдать волны в волноводе
- •§ 6. Сочленение волноводов
- •§ 7. Типы воли в волноводе
- •§ 8. Другой способ рассмотрения волн в волноводе
- •Глава 25
- •§ 2. Скалярное произведение
- •§ 3. Четырехмерный градиент
- •§ 4. Электродинамика в четырехмерных обозначениях
- •§ 5. Четырехмерный потенциал движущегося заряда
- •§ 6. Инвариантность уравнений электродинамики
- •Глава 26
- •§ 2. Поля точечного заряда, движущегося с постоянной скоростью
- •§ 3. Релятивистское преобразование полей
- •§ 4. Уравнения движения в релятивистских обозначениях
- •На отдельный заряд, находящийся в полях е и в, действует
- •Глава 27
- •Фиг. 27.1. Два способа описания сохранения заряда
- •§ 2. Сохранение анергии и электромагнитное поле
- •§ 3. Плотность энергии и поток энергии в электромагнитном поле
- •§ 4. Неопределенность энергии поля
- •§ 5. Примеры потоков энергии
- •§ 6. Импульс поля
- •Глава 28 электромагнитная масса
- •§ 2. Импульс поля движущегося заряда
- •§ 3. Электромагнитная масса
- •§ 4. С какой силой электрон действует сам на себя?
- •§ 5. Попытки изменения теории Максвелла
- •§ 6. Поле ядерных сил
- •Глава 29
- •§ 2. Анализатор импульсов
- •§ 3. Электростатическая линза
- •§ 4. Магнитная линза
- •§ 5. Электронный микроскоп
- •§ 6. Стабилизирующие поля ускорителей
- •§ 7. Фокусировка чередующимся градиентом
- •§ 8. Движение в скрещенных электрическом и магнитном полях
§ 4. Электродинамика в четырехмерных обозначениях
В
гл. 18, § 6, мы уже сталкивались с оператором
Даламбера, хотя и не знали, что он так
называется. Мы нашли там дифференциальное
уравнение для потенциалов, которое в
новых обозначениях выглядит так:
(25.21)
С
правой стороны (25.21) стоят четыре величины
,
jx,
j , jz,
поделенные
на 0
— универсальную постоянную, одинаковую
во всех системах координат, если во всех
системах для измерения заряда
используется одна и та же единица. Таким
образом, четыре величины /jе0,
jх/0,
jy/0,
jz/0
тоже преобразуются как четырехвектор.
Их можно записать в виде jz/е0.
Оператор Даламбера не изменяется при
переходе к другим системам координат,
так что четыре величины ,
Ах,
Ау
и Az
тоже
должны преобразоваться как
четырехвектор, т. е. должны
быть компонентами
четырехвектора. Короче говоря, величина
есть четырехвектор. То, что мы называли скалярным и векторным потенциалами, оказывается только разными частями от одной и той же физической величины. Они неотделимы друг от друга. А если это так, то релятивистская инвариантность мира очевидна. Вектор А мы называем четырехмерным потенциалом (4-потенциалом).
В четырехмерных обозначениях (25.21) приобретает очень простой вид:
(25.22)
Физика этого уравнения та же, что и уравнений Максвелла. Но есть своя прелесть в том, что можно переписывать их в столь элегантной форме. Впрочем, эта красивая форма содержит и кое-что более значительное — из нее непосредственно видна инвариантность электродинамики относительно преобразований Лоренца.
Напомним, что уравнение (25.21) можно получить из уравнений Максвелла только тогда, когда наложено дополнительное условие градиентной инвариантности:
(25.23)
что означает просто A =0, т. е. условие градиентной инвариантности говорит, что дивергенция четырехмерного вектора А равна нулю. Это требование носит название условия Лоренца. Такая форма его записи очень удобна, ибо она инвариантна, а поэтому уравнения Максвелла во всех системах отсчета сохраняют вид (25.22).
§ 5. Четырехмерный потенциал движущегося заряда
Теперь
выпишем законы преобразования, выражающие
и А в движущейся системе через
и А в неподвижной, хотя неявно мы уже
говорили о них. Поскольку А
= (,
А) является четырехвектором, это уравнение
должно выглядеть подобно (25.1), за
исключением того, что t
нужно
заменить на ,
а x
— на А. Таким образом,
(25.24)
При этом предполагается, что штрихованная система координат движется по отношению к нештрихованной со скоростью v в направлении оси х.
Рассмотрим один пример плодотворности идеи 4-потенциала. Чему равны векторный и скалярный потенциалы заряда q, движущегося со скоростью v в направлении оси х! Задача очень упрощается в системе координат, движущейся вместе с зарядом, ибо в этой системе заряд покоится. Пусть заряд находится в начале координат системы S', как это показано на фиг. 25.2.
Фиг. 23.2. Система отсчета S' движется со скоростью v (в направлении оси х) по отношению к системе S.
Заряд, покоящийся в начале системы координат S', находится в системе S в точке x=vt. Потенциалы в точке Р могут быть найдены для любой системы отсчета.
Скалярный потенциал в движущейся системе задается выражением
(25.25)
причем r' — расстояние от заряда q до точки в движущейся системе, где производится измерение поля. Векторный же потенциал А', разумеется, равен нулю.
Теперь без особых хитростей можно найти потенциалы и А в неподвижной системе координат. Соотношениями, обратными к уравнениям (25.24), будут
(25.26)
Используя далее выражение для '[см. (25.25)] и равенство А'=0, получаем
Эта
формула дает нам скалярный потенциал
,
который мы увидели бы в системе S,
но он, к
сожалению, записан через координаты
штрихованной системы. Впрочем, это дело
легко поправимо; с помощью (25.1) можно
выразить t',
х', у',
z'
через
t,
x, у, z
и получить
(25.27)
Повторяя ту же процедуру для вектора А, вы можете показать,
что
А = v. (25.28)
Это те же самые формулы, которые мы вывели в гл. 21, но там они были получены другим методом.