Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 6. Электродинамика.docx
Скачиваний:
25
Добавлен:
12.11.2018
Размер:
3.34 Mб
Скачать

Глава 18 уравнения максвелла

§ 1. Уравнения Максвелла

§ 2. Что дает добавка

§ 3. Все о класси­ческой физике

§ 4. Передвигаю­щееся поле

§ 5. Скорость света

§ 6. Решение уравнений Максвелла; потенциалы и волновое уравнение

§ 1. Уравнения Максвелла

В этой главе мы вернемся к полной системе из четырех уравнений Максвелла, которые мы приняли как отправной пункт в гл. 1 (вып. 5). , До сих пор мы изучали уравнения Максвелла не­большими частями, кусочками; теперь пора уже прибавить последнюю часть и соединить их все воедино. Тогда мы будем иметь полное и точное описание электромагнитных полей, которые могут изменяться со временем произвольным образом. Все сказанное в этой главе, если даже оно и будет противоречить чему-то сказанному ранее, правильно, а то, что говорилось ранее в этих случаях, неверно, потому что все высказанное ранее применялось к таким част­ным случаям, как, скажем, случаи постоянного тока или фиксированных зарядов. Хотя всякий раз, когда мы записывали уравнение, мы весьма старательно указывали ограничения, легко по­забыть все эти оговорки и слишком хорошо заучить ошибочные уравнения. Теперь мы можем изложить всю истину, без всяких ограни­чений (или почти без них).

Все уравнения Максвелла записаны в табл. 18.1 как словесно, так и в математических символах. Тот факт, что слова эквивалентны уравнениям, должен быть сейчас вам уже зна­ком — вы должны уметь переводить одну форму в другую и обратно.

Первое уравнение — дивергенция Е равна плотности заряда, деленной на о,— правильно всегда. Закон Гаусса справедлив всегда как в динамических, так и в статических полях. Поток Е через любую замкнутую поверхность пропорционален заключенному внутри заряду. Третье уравнение — соответствующий общий закон для магнитных полей.

Уравнения Максвелла

(Поток Е через замкнутую поверх­ность) = (Заряд внутри нее)/0

(Интеграл от Е по замкнутому кон­туру) = -d/dt (Поток В сквозь контур)

(Поток В через замкнутую поверх­ность) = 0

с2 (Интеграл от В по контуру)=(Ток в контуре) /0 + d/dt(Поток Е сквозь контур)

(Поток заряда через замкнутую по­верхность) =-d/dt(Заряд внутри нее)

Закон силы

F = q(E+vXB)

Закон движения

(Закон Ньютона, исправлен­ный Эйнштейном}

Гравитация

Поскольку магнитных зарядов нет, поток В через любую замкнутую поверхность всегда равен нулю. Второе уравнение XE=-dB/dt это закон Фарадея, и обсуждался он в последних двух главах. Он тоже верен в общем случае. Но последнее уравнение содержит нечто новое. Раньше мы встречались только с частью его, которая годится для постоянных токов. В этом случае мы говорили, что ротор В равен j/0c2, но правильное общее уравнение имеет новый член, который был открыт Максвеллом.

До появления работы Максвелла известные законы элек­тричества и магнетизма были такими же, как те, что мы изучали в гл. 3—14 (вып. 5) и гл. 15—17. В частности, урав­нение для магнитного поля постоянных токов было известно только в виде

(18.1)

Максвелл начал с рассмотрения этих известных законов и вы­разил их в виде дифференциальных уравнений, так же как мы поступили здесь. (Хотя символ  еще не был придуман, впер­вые, в основном благодаря Максвеллу, стала очевидной важ­ность таких комбинаций производных, которые мы сегодня называем ротором и дивергенцией.) Максвелл тогда заметил, что в уравнении (18.1) есть нечто странное. Если взять дивер­генцию от этого уравнения, то левая сторона обратится в нуль, потому что дивергенция ротора всегда равна нулю. Таким об­разом, это уравнение требует, чтобы дивергенция j также была равна нулю. Но если дивергенция j равна нулю, то полный ток через любую замкнутую поверхность тоже равен нулю.

Полный ток через замкнутую поверхность равен уменьше­нию заряда внутри этой поверхности. Он наверняка не может быть всегда равен нулю, так как мы знаем, что заряды могут перемещаться из одного места в другое. Уравнение

(18.2)

фактически есть наше определение j. Это уравнение выражает самый фундаментальный закон — сохранение электрического заряда: любой поток заряда должен поступать из какого-то запаса. Максвелл заметил эту трудность и, чтобы избежать ее, предложил добавить dE/dt в правую часть уравнения (18.1); тогда он и получил уравнение IV в табл. 18.1:

Во времена Максвелла еще не привыкли мыслить в терми­нах абстрактных полей. Максвелл обсуждал свои идеи с по­мощью модели, в которой вакуум был подобен упругому телу. Он пытался также объяснить смысл своего нового уравнения с помощью механической модели. Теория Максвелла принималась очень неохотно, во-первых, из-за модели, а, во-вторых, потому, что вначале не было экспериментального подтверждения. Сей­час мы лучше понимаем, что дело в самих уравнениях, а не в модели, с помощью которой они были получены. Мы можем только задать вопрос, правильны ли эти уравнения или они ошибочны. Ответ дает эксперимент. И уравнения Максвелла были подтверждены в бессчетных экспериментах. Если мы отбросим все строительные леса, которыми пользовался Мак­свелл, чтобы построить уравнения, мы придем к заключению, что прекрасное здание, созданное Максвеллом, держится само по себе. Он свел воедино все законы электричества и магне­тизма и создал законченную и прекрасную теорию.

Давайте покажем, что добавочный член имеет тот самый вид, который требуется, чтобы преодолеть обнаруженную Мак­свеллом трудность. Взяв дивергенцию его уравнения (IV в табл. 18.1), мы должны получить, что дивергенция правой части равна нулю:

(18.3)

Во втором слагаемом можно переставить порядок дифферен­цирования по координатам и времени, так что уравнение может быть переписано в виде

(18.4)

Но, согласно первому из уравнений Максвелла, дивергенция Е равна /0. Подставляя это равенство в (18.4), мы придем к уравнению (18.2), которое, как мы знаем, правильно. И на­оборот, если мы принимаем уравнения Максвелла (а мы при­нимаем их потому, что никто никогда не обнаружил экспери­мента, который опроверг бы их), мы должны прийти к выводу, что заряд всегда сохраняется.

Законы физики не дают ответа на вопрос: «Что случится, если заряд внезапно возникнет в этой точке, какие будут при этом электромагнитные эффекты?». Ответ дать нельзя, потому что наши уравнения утверждают, что такого не происходит. Если бы это случилось, нам понадобились бы новые законы, но мы не можем сказать, какими бы они были. Нам не прихо­дилось наблюдать, как ведет себя мир без сохранения заряда. Согласно нашим уравнениям, если вы внезапно поместите за­ряд в некоторой точке, вы должны принести его туда откуда-то еще. В таком случае мы можем говорить о том, что произошло.

Когда мы добавили новый член в уравнение для ротора Е, мы обнаружили, что им описывается целый новый класс явле­ний. Мы увидим также, что небольшая добавка Максвелла к уравнению для XB имеет далеко идущие последствия. Мы затронем лишь некоторые из них в этой главе.