Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фейнман - 6. Электродинамика.docx
Скачиваний:
25
Добавлен:
12.11.2018
Размер:
3.34 Mб
Скачать

§ 3. Четырехмерный градиент

Следующей величиной, которую нам следует обсудить, яв­ляется четырехмерный аналог градиента. Напомним (см. гл. 14, вып. 1), что три оператора дифференцирования д/дх, д/ду, d/dz преобразуются подобно трехмерному вектору и назы­ваются градиентом. Та же схема должна работать и в четырех измерениях; по простоте вы можете подумать, что четырехмер­ным градиентом должны быть (d/dt, д/дх, д/ду d/dz), но это неверно.

Чтобы обнаружить ошибку, рассмотрим скалярную функ­цию, которая зависит только от х и t. Приращение  при малом изменении t на t и постоянном х равно

(25.13)

С другой стороны, с точки зрения движущегося наблюда­теля

Используя уравнение (25.1), мы можем выразить х' и t' через t. Вспоминая теперь, что величина х постоянна, так

что x=0, мы пишем

Таким образом,

Сравнивая этот результат с (25.13), мы узнаем, что

(25.14)

Аналогичные вычисления дают

(25.15)

Теперь вы видите, что градиент получился довольно странным. Выражения для х и t через х' и t' [полученные решением уравнений (25.1)] имеют вид

Именно так должен преобразовываться четырехвектор. Но в уравнениях (25.14) и (25.15) знаки получились неправильными! Выход в том, что надо заменить неправильное определение четырехмерного оператора градиента (d/dt,) правильным:

Мы его обозначим  . Для такого  трудности исчезают, и он ведет себя так, как подобает настоящему четырехвектору. (Ужасно неприятно наличие минусов, но так уж устроено в мире.) Разумеется, говоря, что  «ведет себя как четырехвектор», мы подразумеваем, что четырехмерный градиент ска­лярной функции есть четырехвектор. Если  — настоящее ска­лярное (лоренц-инвариантное) поле, то  будет четырехвекторным полем.

Итак, все уладилось. Теперь у нас есть векторы, градиенты и скалярное произведение. Следующий на очереди — инвари­ант, аналогичный дивергенции в трехмерном векторном ана­лизе. Ясно, что аналогом его должно быть выражение b, где bвекторное поле, компоненты которого являются функ­циями пространства и времени. Мы определим дивергенцию четырехвектора b=(bt , b) как скалярное произведение  на b:

где •b — обычная трехмерная дивергенция вектора b. Не забы­вайте внимательно следить за знаками. Один знак минус свя­зан с определением скалярного произведения [формула (25.7)1, а другой возникает от пространственных компонент  [форму­ла (25.16)]. Дивергенция, определяемая формулой (25.7), есть инвариант, и для всех систем координат, отличающихся друг от друга преобразованием Лоренца, применение ее приводит к одинаковой величине.

Остановимся теперь на физическом примере, в котором появ­ляется четырехмерная дивергенция. Ею можно воспользоваться при решении задачи о полях вокруг движущегося проводника. Мы уже видели (гл. 13, § 7, вып. 5), что плотность электрического заряда  и плотность тока j образуют четырехвектор j=(p, j). Если незаряженный провод переносит ток jx, то в системе от­счета, движущейся относительно него со скоростью v (вдоль оси х), в проводнике наряду с током появится и заряд [который возникает согласно закону преобразований Лоренца (25.1)1:

Но это как раз то, что мы нашли в гл. 13. Теперь нужно под­ставить эти источники в уравнение Максвелла в движущейся системе и найти поля.

Закон сохранения заряда в четырехмерных обозначениях тоже принимает очень простой вид. Рассмотрим четырехмерную дивергенцию вектора j :

(25.18)

Закон сохранения заряда утверждает, что утекание тока из еди­ницы объема должно быть равно отрицательной скорости уве­личения плотности заряда. Иными словами,

Подставляя это в (25.18), получаем очень простую форму за­кона сохранения заряда:

(25.19)

Благодаря тому, что j — инвариант, равенство его нулю в одной системе отсчета означает равенство нулю и во всех дру­гих. Таким образом, если заряд сохраняется в одной системе, он будет сохраняться и во всех других системах координат, дви­жущихся относительно нее с постоянной скоростью.

В качестве последнего примера рассмотрим скалярное про­изведение оператора градиента  на себя. В трехмерном про­странстве такое произведение дает лапласиан

Что получится для четырех измерений? Вычислить это очень просто. Следуя нашему правилу скалярного произведения, на­ходим

Этот оператор, представляющий аналог трехмерного лапласиа­на, называется даламбертианом и обозначается специальным

символом

(25.20)

По построению он является скалярным оператором, т. е., если подействовать им, скажем, на четырехвекторное поле, возникает новое четырехвекторное поле. [Иногда даламбертиан определяется с противоположным по отношению к (25.20) зна­ком, так что при чтении литературы будьте внимательны!]

Итак, для большинства величин, перечисленных нами в табл. 25.1, мы нашли их четырехмерные эквиваленты. (У нас еще нет эквивалента векторного произведения, но его нахождение мы оставим до следующей главы.) А теперь соберем в одно место все важнейшие результаты и определения и составим еще одну таблицу (табл. 25.2); она поможет вам лучше запомнить, что во что переходит.