Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Проективная геометрия для ИМ..doc
Скачиваний:
188
Добавлен:
30.10.2018
Размер:
4.01 Mб
Скачать

Аналитическое представление проективных преобразований

Любое проективное преобразование однозначно определяется парой реперов R(Е1 , Е2 , Е3 , Е) и R′(Е1 , Е2 , Е3 , Е′). Так как реперы заданы, тогда можно найти преобразование координат при переходе от одного репера к другому, т.е. можно найти матрицу А причем она не вырождена (почему?).

Формулы преобразования координат одной и той же точки Х будут:

λ ХR =AXR и μ XR = А-1ХR (*)

Пусть f (Х) = Х ', причем ХR и Х 'R′ .

Найдем координаты точки Х ' в репере R: λ Х 'R = AХ 'R .

Таким образом, λ Х 'R =AХR , тогда μ Х = A-1f (Х) (**)

(Почему существует обратная матрица?)

Замечание: Хотя формулы (*) и (**) вроде бы одинаковые, необходимо помнить, что в (*) одна и та же точка в разных реперах, в (**) две разные точки (образ и прообраз) в одном репере.

Матрица, задающая преобразование координат для двух данных реперов R(Е1 , Е2 , Е3 , Е) и R′(Е1 , Е2 , Е3 , Е′) единственна (с точностью до пропорциональности). Отсюда следует, что проективное преобразование задает единственную матрицу A (с точностью до пропорциональности).

Теорема. Если на Р2 задано отображение формулами (**), тогда это отображение является проективным преобразованием.

Доказательство. Пусть f : Р2 Р2 , так что λ f (Х)= AХ.

Рассмотрим точки репера Е1 , Е2 , Е3 , Е , их образы обозначим

Е1 , Е2 , Е3 , Е′. Необходимо и достаточно доказать что точки

Е1 , Е2 , Е3 , Е′ образуют новый репер (т.е никакие три не лежат на одной прямой и он согласован).

Пусть матрица A =, тогда Е′1= f (Е1)= A· = ,

Е2= f (Е2)= = , Е3=f(Е3)= = , Е′=f(Е)= =

Е1 , Е2 , Е3 - не лежат на одной прямой, так как ≠0 (почему?),

То же самое можно сказать о тройках: Е1 , Е2 , Е′, Е1 , Е3 , Е′, Е2 , Е3 , Е′.

Т.к., Е1 + Е2+ Е3= Е′ - есть согласованность (проверьте).

Таким образом, f : R(Е1 , Е2 , Е3 , Е) → R′(Е1 , Е2 , Е3 , Е′), а значит f - есть проективное преобразование. □

Вывод: Проективное преобразование однозначно определяется формулами (**), то есть матрицей A. Поэтому это тоже можно считать определением проективного преобразования.

Определение: Композицией двух проективных преобразований f : Х → Х′ и g : Х′ → Х′′ будем называть последовательное выполнение преобразований сначала f затем g.

Обозначение: f ◦ g

При этом f : R R′ и g : R′ → R′′ , значит f ◦ g : RR′′, т.о., f◦g - проективное преобразование.

(почему?).

Пусть f задается матрицей A, а g задается матрицей В.

Тогда f◦g(Х)=f(g(Х))=f(A·Х)=В(A·Х)=В·A·Х,

таким образом матрицей преобразования f◦g является матрица В·A, причем она не вырождена. (почему?).

Определение: Преобразование, оставляющее все точки плоскости на месте, называется тождественным.

Тождественное преобразование задается матрицей – Е.

Определение: Обратным преобразованием для f : Х → Х′ будет преобразование f -1 : Х′ → Х .

Если f : RR′ ,

тогда f -1 : R′ → R.

f -1 - проективное преобразование (почему?).

f -1 будет задаваться - А-1 (почему?).

Теорема. Множество П - проективных преобразований является группой относительно операции композиция.

Доказательство. Самостоятельно.

Теорема. Проективное преобразование прямой образует подгруппу в группе проективных преобразований - П.

Доказательство. Самостоятельно.

Виды проективных преобразований:

1. Инволюция – нетождественное проективное преобразование , совпадающее со своим обратным: f = f -1.

2. Коллинеация - проективное преобразование, при котором прямая переходит в прямую, точка переходит в точку.

3. Корреляция - проективное преобразование, при котором прямая переходит в точку, точка переходит в прямую.

4. Гомология - проективное преобразование, имеющее по крайней мере три неподвижных точки принадлежащие одной прямой.

5. Центральное проектирование.

Множество коллинеаций образует подгруппу в группе проективных преобразований. Подгруппа коллинеаций сама имеет несколько подгрупп. Эта идея («групповая») была положена в основу классификации геометрических преобразований Феликсом Клейном в 1872 году в работе «Сравнительное обозрение новейших геометрических исследований». Другое название этой работы - «Эрлангенская программа».

Геометрия – это учение о геометрических преобразованиях и каждая геометрия характеризуется соответствующей группой преобразований. Предметом геометрии являются те свойства фигур, которые инвариантны при преобразованиях данной группы.

Евклидова геометрия изучает те свойства фигур, которые сохраняются при движениях - Д (длины, углы). Аффинная геометрия изучает те свойства фигур, которые сохраняются при аффинных преобразованиях - А (простое отношение точек, параллельность прямых). Проективная геометрия изучает те свойства фигур, которые сохраняются при проективных преобразованиях - П (сложное отношение точек, инцидентность, точка, прямая, пучок, репер, квадрики).

Д А П