Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Проективная геометрия для ИМ..doc
Скачиваний:
188
Добавлен:
30.10.2018
Размер:
4.01 Mб
Скачать

Полюс и поляра

Рассмотрим овальную квадрику ХТQХ = 0 и точки А и В не принадлежащие квадрике.

Пусть M и L точки пересечения квадрики и прямой (АВ).

Определение: Если (AB,ML)=-1, то говорят что овальная квадрика гармонически разделяет пару АВ, или точки А и В гармонически сопряжены относительно овальной квадрики.

На прямой (АВ) рассмотрим репер R(A,B,M), тогда в этом репере и точки А, В , М и пусть точка L .

Если (AB,ML)= -1, тогда = -1 α = 1 и β = -1 , т.е. L .

Таким образом, М = А+В и L = А – В.

Значит, для точек пересечения прямой (АВ) с квадрикой .

Но являются корнями уравнения λ²∙а + 2∙λμс + μ²∙b=0,

где а = АТQА, b = ВТQВ, с = А ТQВ = ВТQА.

По теореме Виета сумма корней равна среднему коэффициенту, взятому с противоположным знаком: += - с с = 0 АТQВ = ВТQА = 0 - условие гармонической сопряженности точек А и В относительно квадрики.

Фиксируем точку А КВП. Рассмотрим все прямые проходящие через эту точку в каждом случае будет своя точка В гармонически сопряженная с А относительно овальной квадрики. Сделаем точку В переменной, по условию гармонической сопряженности точек относительно овальной квадрики получим: АТQХ = 0 - это уравнение I степени, то есть прямая, причем это прямая единственна. Эту прямую будем называть полярой точки А. Если точка А КВП, то уравнение АТQХ = 0 определяет касательную к квадрике в точке А.

Определение: Полярой точки А называется прямая, состоящая из точек гармонически сопряженных с данной точкой относительно овальной квадрики.

Вывод: Полярой точки А является прямая, которая имеет уравнение: АТQХ = 0 и

в случае А КВП является касательной к овальной квадрике,

в случае А КВП состоит из точек гармонически сопряженных с точкой А относительно овальной квадрики.

Определение: Уравнение АТQХ = 0 называется уравнением поляры точки А относительно овальной квадрики.

Если уравнение прямой аХ=0, тогда λа = АТQ (с точностью до пропорциональности).

λа = АТQ λаQ-1 = АТQQ-1 μАТ= аQ-1 или μА= Q-1 аТ

(Почему существует Q-1 и почему (Q-1)Т= Q-1 ? )

Вывод: Для любой прямой существует точка, для которой эта прямая является полярой относительно квадрики.

Определение: Точка, для которой данная прямая относительно овальной квадрики является полярой, называется полюсом прямой.

Свойства:

1. Если точка А внешняя по отношению к овальной квадрике, то ее поляра проходит через точки касания касательных проведенных из точка А к КВП.

Доказательство. Координаты точек касания Х1 и Х2 находятся из системы , первое уравнение это уравнение квадрики, второе уравнение это уравнение поляры, а значит это точки пересечения поляры и квадрики. □

2. Если точка и прямая инцидентны, то их поляра и полюс тоже инцидентны.

Доказательство. Пусть а – поляра точки А и В - полюс прямой b,

значит λа = АТQ и μВ= Q-1 bТ. Докажем, что А b B a.

Уравнение прямой bХ = 0, тогда А b bА =0.

Найдем аВ=(АТQ)∙(Q-1b)=АТ∙(QQ-1)∙bТТ∙Е∙bТТbТ=(Аb)Т=0 - это означает, что точка В лежит на прямой а. □

Замечание: Свойство 2 позволяет находить полюс прямой. Выбрав на данной прямой две любые точки и построив их поляры, точка их пересечения будет полюсом данной прямой.

Задача. Дана квадрика х1² - 2∙х2²+ 4∙х2х3 =0 . Найти уравнение поляры для А и координаты полюса прямой b: х1+х22∙х3=0.

Решение. Q= Q-1=

λа=АТQ=( 1: 3 :-1) ∙=(1 :-8: 6) х1 -8∙х2+6∙х3=0.

μВ=Q-1bТ== В=.

Задача. Дана квадрика 2х1² + х3² - 2х1х2 -2х1х3 =0 . Найти уравнения касательных к квадрике из точки А.

Решение. Воспользуемся свойством (1). Q=. Найдем уравнение поляры.

λа = АТQ=( 1: 8 : 5 )∙=( -11 : -1 : 4 ) 11∙х1 + х2 - 4∙х3 =0.

Найдем точки пересечения квадрики поляры.

D=100–96 = 4 и . и

В и С - точки пересечения поляры и квадрики, тогда прямые (АВ) и (АС) будут касательными.

(АВ) : =0 - 7∙х1 - х2 + 3∙х3 =0.

(АС) : =0 17∙х1 + х2 - 5∙х3 =0.

Определение: Трехвершинник называется автополярным относительно овальной квадрики, если каждая его вершина является полюсом противоположной стороны.

Замечание: Автополярных трехвершинников может быть много.

Теорема. Для того чтобы уравнение овальной квадрики было каноническим необходимо и достаточно, чтобы ΔЕ1Е2Е3 был автополярным относительно данной квадрики.

Доказательство. Необходимость:

Дано q11 х1² + q22х2² + q33х3² =0 .

Доказать что ΔЕ1Е2Е3 автополярный трёхвершинник.

Достаточность: Найти матрицу Q , используя то, что точка Е1

является полюсом прямой (Е2Е3 ) и т.д. (самостоятельно).

Определение: Четырехвершинник называется вписанным в овальную квадрику, если его вершины инцидентны квадрике.

Теорема. Если четырехвершинник вписан в овальную квадрику, тогда диагональный трехвершинник является автополярным относительно квадрики.

Доказательство. Пусть АВСD – четырёхвершинник вписанный в овальную квадрику и ΔPQR - диагональный трёхвершинник.

Докажем, что Р - полюс прямой (QR).

По гармоническим свойствам полного четырехвершинника гармоническими будут: (CB,PK)=(AD,PN)= -1, т.е. точки K и N гармонически сопряжены с точкой Р относительно овальной квадрики, а значит они принадлежат поляре точки Р. В тоже время точки K и N лежат на прямой (QR) (QR) - поляра точки Р. Для точек Q и R доказательство аналогично. □

Замечание: Эта теорема позволяет строить поляру точки если она не инцидентна овальной квадрике.

Задачи на построение

Задача 1. Дана овальная квадрика и точка Р ей не инцидентная. Построить поляру точки Р.

Решение. Пусть для определенности Р – внешняя точка. Необходимо восстановить какой-либо четырёхвершинник инцидентный овальной квадрике, так чтобы точка Р была одной из диагональных точек. Через точку P проводим две произвольные прямые а и b так чтобы они пересекали квадрику: а ∩ КВП =А, В, b ∩ КВП = С, D.

АВСD - является вписанным четырехвершинником и точка P является диагональной точкой. Строим две другие диагональные точки: (АС)(ВD)=Q, и (АD)(ВС)=R.

Прямая (RQ) является полярой.

Замечание: В некоторых случаях одну из диагональных точек построить сложно, она может выйти за пределы чертежа. В этом случае можно построить ещё один какой-либо четырехвершинник вписанный в овальную квадрику.

Замечание: Если P – внутренняя точка построение аналогичное.

Задача 2. Дана овальная квадрика и прямая а. Построить полюс прямой.

Решение. Воспользуемся свойством (2).

На прямой а возьмем две различные точки В и С, построим их поляры - b и с (см. пред. задачу).

b ∩ с = А – полюс прямой а .

Задача 3. Дана овальная квадрика и точка А ей инцидентная, построить поляру точки.

Решение. Поляра точки в этом случае будет касательной.

Воспользуемся свойством (2): если через точку А провести какую-либо прямую b, то её полюс – В пройдет через поляру точки А.

Построение полюса прямой – задача 2.

Задача 4. Дана овальная квадрика и точка А. Через точку А провести касательную к квадрике.

Решение.

1. А - внутренняя точка - касательных нет.

2 А КВП – касательная является полярой (см. задачу 3).

3. А - внешняя точка - касательные две. По свойству (1), если а поляра точки А, тогда а ∩ КВП = В и С - эти точки являются точками касания. Т.е. (АВ) и (АС) - касательные.

Задача 5. Дана овальная квадрика и прямая а , касающаяся квадрики, построить полюс прямой.

Решение. Полюс прямой в этом случае будет точкой касания.

Воспользуемся свойством (2). Если на данной прямой а взять какую-либо точку В, то её поляра – b пройдет через полюс прямой а.

Построение поляры точки – задача 1.