Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kurant_Robbins_Chto_takoe_matematika.pdf
Скачиваний:
200
Добавлен:
26.03.2016
Размер:
5.82 Mб
Скачать

26

НАТУРАЛЬНЫЕ ЧИСЛА

гл. I

ними совершаемыми: сложением и умножением.

§1. Операции над целыми числами

1.Законы арифметики. Математическую теорию натуральных

(иначе, целых положительных) чисел называют арифметикой. Эта теория основана на том факте, что сложение и умножение целых чисел подчинены некоторым законам. Чтобы сформулировать эти законы во всей их общности, нельзя воспользоваться символами вроде 1, 2, 3, относящимися к определенным, конкретным числам. Утверждение

1 + 2 = 2 + 1

есть только частный случай общего закона, содержание которого заключается в том, что сумма двух чисел не зависит от порядка, в котором мы рассматриваем эти числа. Если мы хотим выразить ту мысль, что некоторое соотношение между целыми числами имеет место (оправдывается, осуществляется), каковы бы ни были рассматриваемые числа, то будем обозначать их символически, т. е. условно, буквами a, b, c, . . . Раз такого рода соглашение принято, сформулировать пять основных законов арифметики — очевидно, близко знакомых читателю — не представит труда:

1) a + b = b + a, 2) ab = ba, 3) a + (b + c) = (a + b) + c,

4) a(bc) = (ab)c, 5) a(b + c) = ab + bc.

Два первых закона — коммутативный (переместительный) закон сложения и коммутативный закон умножения — говорят, что при сложении и при умножении можно менять порядок чисел, над которыми совершается действие. Третий — ассоциативный (сочетательный) закон сложения — гласит, что при сложении трех чисел получается один и тот же результат независимо от того, прибавим ли мы к первому числу сумму второго и третьего, или прибавим третье к сумме первого и второго. Четвертый закон есть ассоциативный закон умножения. Последний — дистрибутивный (распределительный) закон — устанавливает то обстоятельство, что при умножении суммы на некоторое целое число можно умножить на это число каждое слагаемое и полученные произведения сложить.

Эти арифметические законы совсем просты и, пожалуй, могут показаться очевидными. Но следует все же заметить, что к иного рода объектам — не к целым числам — они могут оказаться и неприменимыми. Например, если a и b обозначают не числа, а химические вещества и если «сложение» понимается в смысле обычной речи, то легко понять, что коммутативный закон сложения не всегда оправдывается. В самом деле, если, скажем, к воде будем прибавлять серную кислоту, то получится разбавленный раствор, тогда как прибавление воды

§ 1

ОПЕРАЦИИ НАД ЦЕЛЫМИ ЧИСЛАМИ

27

к чистой серной кислоте может закончиться неблагополучно для экспериментатора. С помощью таких же иллюстраций можно показать, что в химической «арифметике» иногда нарушаются и ассоциативный, и дистрибутивный законы сложения. Итак, можно вообразить и такие типы арифметических систем, в которых один или несколько законов 1)–5) теряют силу. Такие системы действительно изучались современной математикой. Основа, на которой покоятся законы 1)–5), дается конкретной моделью для абстрактного понятия целого числа. Вместо того чтобы пользоваться обыкновенными знаками 1, 2, 3 и т. д., станем обозначать число предметов в данной совокупности (например, яблок на данном дереве) системой точек в четырехугольном «ящичке» — таким образом, чтобы каждому предмету соответствовало по одной точке. Оперируя этими ящичками, мы сможем исследовать законы арифметики целых чисел. Чтобы сложить два целых числа a и b, мы сдвигаем вместе соответствующие ящички и затем уничтожаем перегородку. Чтобы

Рис. 1. Сложение

умножить a на b, мы выстроим точки в двух ящичках в ряд и затем устроим новый ящичек, в котором точки будут расположены так, что образуют a горизонтальных и b вертикальных рядов. И тогда ясно видно, что правила 1)–5) выражают интуитивно очевидные свойства введенных операций с ящичками.

Рис. 2. Умножение

Рис. 3. Дистрибутивный закон

На основе определения сложения двух целых чисел можно теперь дать определение неравенства. Каждое из двух эквивалентных утверждений, именно a < b («a меньше, чем b») и b > a («b больше, чем a»), обозначает, что ящичек b может быть получен из ящичка a посредством прибавления надлежащим образом выбранного третьего ящичка c таким

28

НАТУРАЛЬНЫЕ ЧИСЛА

гл. I

Рис. 4. Вычитание

образом, что b = a + c. Если это так, то мы напишем

c = b − a,

чем и определяется операция вычитания.

Сложение и вычитание называют обратными операциями, так как если, например, к числу a прибавить число d, а затем из того, что получится, отнять d, то получится снова исходное число a:

(a + d) − d = a.

Нужно заметить, что число b − a было определено только при условии b > a. Значение символа b − a как отрицательного целого числа при условии b < a будет рассмотрено далее (стр. 73 и след.). Часто бывает удобно пользоваться обозначением b > a («b больше или равно a») или a 6 b («a меньше или равно b», «a не превосходит b»), понимая под этим не что иное, как отрицание того, что a > b. Таким образом, можно написать 2 > 2, и можно также написать 3 > 2.

Мы можем еще несколько расширить область положительных целых чисел, которые мы изображаем ящичками с точками. Введем целое число нуль, изображаемое совершенно пустым ящичком; условимся обозначать такой пустой ящичек обычным символом 0. Тогда, согласно нашему определению сложения и умножения, каково бы ни было целое число a,

получаются соотношения

 

a + 0 = a,

a · 0 = 0.

Действительно, a + 0 обозначает прибавление пустого ящичка к ящичку a, а a · 0 обозначает ящичек, в котором вовсе нет вертикальных рядов, т. е. пустой ящичек. Тогда уже вполне естественно расширить определение вычитания, полагая

a − a = 0

при любом a. Таковы характерные арифметические свойства нуля. Геометрические модели вроде ящичков с точками (сюда относится

древний абак) широко применялись при арифметических вычислениях вплоть до конца средневековья и только мало-помалу уступили место гораздо более совершенным символическим методам, основанным на десятичной системе.

2. Представление целых чисел с помощью письменных знаков (нумерация). Необходимо очень тщательно делать различие между целым числом и тем символом (например, 5, V и т. п.), которым

§ 1

ОПЕРАЦИИ НАД ЦЕЛЫМИ ЧИСЛАМИ

29

пользуются для его письменного воспроизведения. В нашей десятичной системе нуль и девять целых натуральных чисел обозначаются цифрами 0, 1, 2, 3, . . . , 9. Числа большей величины, как, скажем, «триста семьдесят два», представляются в виде

300 + 70 + 2 = 3 · 102 + 7 · 10 + 2

и в десятичной системе записываются символом 372. Существенно в данном случае то, что смысл каждой из цифр 3, 7, 2 зависит от ее положения — от того, стоит ли она на месте единиц, десятков или сотен. Используя «поместное значение» цифр (позиционный принцип), мы имеем возможность изобразить любое натуральное число с помощью всего лишь десяти цифр в их различных комбинациях. Общее правило такого изображения дается схемой, которая иллюстрируется примером

z = a · 103 + b · 102 + c · 10 + d,

где a, b, c, d представляют собой целые числа в пределах от нуля до девяти. Число z в этом случае сокращенно обозначается символом

abcd.

Заметим, между прочим, что коэффициенты d, c, b, a являются не чем иным, как остатками при последовательном делении числа z на 10. Так, например,

372

 

10

 

 

2

 

37

 

10

73 10

3 0

С помощью написанного выше выражения для числа z можно изображать только те числа, которые меньше десяти тысяч, так как числа большие, чем десять тысяч, требуют пяти или большего числа цифр. Если z есть число, заключенное между десятью тысячами и ста тысячами, то его можно представить в виде

z = a · 104 + b · 103 + c · 102 + d · 10 + e

изаписать символически как abcde. Подобное же утверждение справедливо относительно чисел, заключенных между ста тысячами и одним миллионом, и т. д. Чрезвычайно важно располагать способом, позволяющим высказать результат, к которому мы приходим, во всей его общности посредством одной-единственной формулы. Мы можем добиться этой цели, если обозначим различные коэффициенты e, d, c, . . . одной

итой же буквой a с различными значками (индексами) a0, a1, a2, . . ., а то обстоятельство, что степени числа 10 могут быть сколь угодно большими, выразим тем, что высшую степень числа 10 обозначим не 103 или 104, как в предыдущих примерах, а станем писать 10n, понимая

30

НАТУРАЛЬНЫЕ ЧИСЛА

гл. I

под n совершенно произвольное натуральное число. В таком случае любое целое число z в десятичной системе может быть представлено в виде

z = an · 10n + an−1 · 10n−1 + . . . + a1 · 10 + a0

(1)

и записано посредством символа

anan−1an−2 . . . a1a0.

Как и в рассмотренном выше частном примере, мы обнаруживаем, что a0, a1, a2, . . . , an являются остатками при последовательном делении z на 10.

В десятичной системе число «десять» играет особую роль как «основание» системы. Тот, кому приходится встречаться лишь с практическими вычислениями, может не отдавать себе отчета в том, что такое выделение числа десять не является существенным и что роль основания способно было бы играть любое целое число, большее единицы. Например, была бы вполне возможна семеричная система с основанием семь. В такой системе целое число представлялось бы в виде

bn · 7n + bn−1 · 7n−1 + . . . + b1 · 7 + b0,

(2)

где коэффициенты b обозначают числа в пределах от нуля до шести, и оно записывалось бы посредством символа

bnbn−1 . . . b1b0.

Так, число «сто девять» в семеричной системе обозначалось бы симво-

лом 214, потому что

109 = 2 · 72 + 1 · 7 + 4.

В качестве упражнения читатель может вывести общее правило для перехода от основания 10 к любому основанию B: нужно выполнять последовательные деления на B, начиная с данного числа z; остатки и будут «цифрами» при записи числа в системе с основанием B. Например,

109

 

7

 

 

 

 

4

 

15

 

7

 

 

 

 

1

 

2

 

7

 

 

 

 

2

 

0

109 (в десятичной системе) = 214 (в семеричной системе).

Естественно, возникает вопрос: не был ли бы особенно желательным выбор какого-либо специального числа в качестве основания системы счисления? Мы увидим дальше, что слишком маленькое основание должно было бы вызвать кое-какие неудобства; с другой стороны, слишком большое основание потребовало бы заучивания многих цифр и знания расширенной таблицы умножения. Высказывались соображения в пользу системы с основанием 12 («двенадцатиричной»): указывалось,

§ 1

ОПЕРАЦИИ НАД ЦЕЛЫМИ ЧИСЛАМИ

31

что 12 делится без остатка на два, на три, на четыре и на шесть, и потому вычисления, связанные с делениями и дробями, при основании 12 были бы несколько проще. Чтобы написать произвольное число в двенадцатиричной системе, понадобились бы две лишние цифры — для обозначения чисел «десять» и «одиннадцать». Пусть a обозначало бы десять, а b — одиннадцать. Тогда в двенадцатиричной системе «двенадцать» пришлось бы написать в виде 10, «двадцать два» — в виде 1a, «двадцать три» — в виде 1b, а «сто тридцать один» — в виде ab.

Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерийцам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. Более древние системы нумерации были построены исключительно на аддитивном принципе.1 Так, в римской нумерации CXVII обозначает «сто + десять + пять + один + один + один». Египетская, еврейская и греческая системы были на том же уровне. Неудобством чисто аддитивной системы является то обстоятельство, что с увеличением изображаемых чисел требуется неограниченное число новых символов. Но главнейшим недостатком древних систем (вроде римской) было то, что сама процедура счета была очень трудна: даже самые простые задачи могли решать только специалисты-профессионалы. Совсем иначе обстоит дело с распространенной в наше время индусской «позиционной» системой. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших ее у мусульман. Позиционная система обладает тем чрезвычайно выгодным свойством, что все числа, и малые и большие, могут быть записаны с помощью небольшого числа различных символов; в десятичной системе таковыми являются «арабские цифры» 0, 1, 2, . . . , 9. Не меньшее значение имеет

илегкость счета в этой системе. Правила действий с числами, записываемыми по позиционному принципу, могут быть резюмированы в виде таблиц сложения и умножения и могут быть раз навсегда выучены на память. Старинному методу счета, которым раньше владели лишь немногие избранные, теперь обучают разве лишь в начальных школах. В истории культуры найдется немного примеров того, чтобы научный прогресс оказал на практическую жизнь столь глубокое, столь облегчающее влияние.

3.Арифметические действия в недесятичных системах счисления. Исключительная роль десятка восходит к истокам цивилизации

ибез всякого сомнения связана со счетом по пальцам на двух руках.

Но наименования числительных в разных языках указывают и на

1На самом деле элементы «позиционности» есть и в римской нумерации, во всяком случае, порядок расположения «разрядов» играет роль; так, VI = V + I, но IV = V − I, LX = L + X, но XL = L − X и т. п. — Прим. ред.

32

НАТУРАЛЬНЫЕ ЧИСЛА

гл. I

наличие (в былые времена) иных систем счисления, именно с основаниями двадцать и двенадцать. В английском и немецком языках слова, обозначающие 11 и 12, построены не по десятичному принципу, сочетающему десятки с единицами: они лингвистически независимы от слов, обозначающих число 10. Во французском языке слова, обозначающие 20 и 80, позволяют предполагать первоначальное существование системы с основанием 20, используемой для тех или иных надобностей. В датском языке слово halvfirsinds-tyve, обозначающее 70, буквально переводится «полпути от трижды двадцать до четырежды двадцать». Вавилонские астрономы пользовались системой, являвшейся отчасти шестидесятеричной (с основанием 60), и именно в этом обстоятельстве следует искать объяснение того факта, что час и угловой градус подразделены на 60 минут.

В недесятичных системах счисления правила арифметики, конечно, те же самые, но таблицы сложения и умножения однозначных чисел отличны от наших десятичных. Будучи приучены к десятичной системе и связаны наименованиями числительных в нашем языке, мы, если попытаемся считать по иным системам, сначала испытаем известное неудобство. Попробуем поупражняться в умножении по семеричной системе. Прежде чем приступить к этому, рекомендуется выписать две таблички, которыми придется пользоваться.

 

 

Сложение

 

 

 

 

 

Умножение

 

 

 

1

2

3

4

5

6

 

 

1

2

3

4

5

6

 

 

 

1

2

3

4

5

6

10

1

1

2

3

4

5

6

2

3

4

5

6

10

11

2

2

4

6

11

13

15

3

4

5

6

10

11

12

3

3

6

12

15

21

24

4

5

6

10

11

12

13

4

4

11

15

22

26

33

5

6

10

11

12

13

14

5

5

13

21

26

34

42

6

10

11

12

13

14

15

6

6

15

24

33

42

51

Станем теперь умножать 265 на 24, причем эти числа предполагаются написанными в семеричной системе. (Если написать числа по десятичной системе, то речь идет об умножении 145 на 18.) Начнем с умножения 5 на 4, что, как показывает таблица умножения, дает 26.

×265

24

+1456

563

10416

Мы пишем 6 на месте единицы, затем переносим двойку в следующий разряд. Далее, находим, что 4 · 6 = 33 и что 33 + 2 = 35. Пишем в

§ 1 ОПЕРАЦИИ НАД ЦЕЛЫМИ ЧИСЛАМИ 33

произведении 5 и продолжаем таким же образом, пока умножение не закончится. При сложении чисел 1456 и 5630 на месте единиц получаем 6 + 0 = 6, затем на месте семерок 5 + 3 = 11. Пишем 1 и 1 переносим на место «сорокадевяток», где получается 1 + 6 + 4 = 14. Окончательный результат: 265 · 24 = 10416.

Для проверки проделаем то же действие в десятичной системе. Чтобы переписать число 10 416 по десятичной системе, придется найти степени 7 вплоть до четвертой: 72 = 49, 73 = 343, 74 = 2401. Отсюда следует, что 10416 = 2401 + 4 · 49 + 7 + 6, причем правая часть равенства записана уже по десятичной системе. Складывая числа, мы находим, что число 10 416, записанное по семеричной системе, равно числу 2610, записанному по десятичной. Умножим теперь 145 на 18 в десятичной системе: получается как раз 2610.

Упражнения. 1) Составьте таблицы сложения и умножения в двенадцатеричной системе и проделайте несколько примеров вроде приведенного выше.

2)Напишите «тридцать» и «сто тридцать три» в системах с основаниями

7, 11, 12.

3)Что обозначают символы 11111 и 21212 в этих системах?

4)Составьте таблицы сложения и умножения для систем с основаниями

5, 11, 13.

С теоретической точки зрения система, построенная по позиционному принципу с основанием 2, выделяется в том смысле, что это основание — наименьшее возможное. В этой двоичной (диадической, бинарной) системе имеются лишь две цифры: 0 и 1; всякое иное число записывается как комбинация этих символов. Таблицы сложения и умножения сводятся к двум правилам: 1 + 1 = 10 и 1 · 1 = 1. Но непрактичность такой системы достаточно очевидна1: чтобы изобразить уже небольшие числа, нужны длинные выражения. Так, число «семьдесят девять», которое представляется в виде 1 · 26 + 0 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 1 · 2 + 1, записывается в двоичной системе как 1 001 111.

Чтобы проиллюстрировать, насколько просто производится умножение в двоичной системе, перемножим числа семь и пять, которые записываются соответственно в виде 111 и 101. Принимая во внимание,

1Со времени написания книги (1941 г.; последнее английское издание, которым мы располагали, вышло в 1948 г.) столь «непрактичная» для обычного счета двоичная система получила широкие и общеизвестные применения в машинной математике (идея которых — «кодирование» любого текста с помощью алфавита из двух знаков — предугадывается в приводимой ниже фразе Лапласа о Лейбнице). — Прим. ред.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]