
- •М.М. Харах
- •Предисловие
- •Условные обозначения
- •Введение.
- •Предмет начертательной геометрии.
- •Центральная и параллельная проекции.
- •Свойства параллельной проекции.
- •Комплексный чертеж точки, прямой линии и плоской фигуры.
- •Ортогональное проецирование. Эпюр Монжа.
- •Связь между прямоугольными проекциями точки и ее ортогональными координатами.
- •Прямая линия. Плоскости.
- •Задание и изображение прямой.
- •Задание и изображение плоскости.
- •Прямые и плоскости частного положения.
- •Проецирующие прямая и плоскость.
- •Прямые и плоскости уровня.
- •Многогранники.
- •Основные понятия и определения. Изображение многогранников на чертеже.
- •Кривые линии и их проекционные свойства.
- •Основные понятия и определения.
- •Пространственные кривые линии.
- •Цилиндрическая винтовая линия.
- •Обводы.
- •Алгоритм построения обвода из дуг окружностей.
- •Алгоритм построения обводов из дуг кривых второго порядка.
- •Кривые поверхности. Их образование и задание на чертеже. Основные понятия и определения.
- •Очертание поверхности.
- •Систематизация поверхностей.
- •Поверхности вращения.
- •Построение главного медиана поверхности вращения.
- •Поверхности вращения второго порядка.
- •Развертывающиеся линейчатые поверхности.
- •Линейчатые поверхности с плоскостью параллелизма.
- •Винтовые поверхности.
- •Прямой геликоид.
- •Наклонный геликоид.
- •Способы преобразования комплексного чертежа.
- •Способ замены плоскостей проекций.
- •Вращение.
- •Вращение вокруг проецирующей прямой.
- •Вращение вокруг линии уровня.
- •Вращение без указания оси вращения. (Способ плоскопараллельного движения).
- •Позиционные задачи.
- •Первая основная позиционная задача.
- •Пересечение двух плоскостей.
- •Пересечение многогранника плоскостью.
- •Пересечение прямой с поверхностью многогранника.
- •Взаимное пересечение многогранников.
- •7.6. Пересечение кривой поверхности плоскостью.
- •7.7. Пересечение прямой линии с кривой поверхностью.
- •7.8. Взаимное пересечение кривых поверхностей.
- •7.8.1. Способ вспомогательных секущих плоскостей.
- •7.8.2. Способ вспомогательных секущих сфер.
- •7.8.2.1. Способ концентрических сфер.
- •7.8.2.2. Способ эксцентрических сфер.
- •Вопросы для самопроверки.
- •Метрические задачи.
- •Определение натуральной величины отрезка прямой способом прямоугольного треугольника.
- •Перпендикулярность двух прямых, прямой и плоскости.
- •Развертки поверхностей.
- •Развертки многогранников.
- •8.3.2. Построение приближенных разверток развертывающихся поверхностей.
- •8.3.3. Условные развертки неразвертывающихся поверхностей.
- •8.3.4. Построение развертки методом нормального сечения.
- •8.3.5.Построение развертки методом раскатки.
- •8.3.6. Применение разверток в технике.
- •Вопросы для самопроверки.
- •9. Аксонометрические проекции.
- •9.1. Основные понятия и определения.
- •9.2. Основная теорема аксонометрии (теорема Польке).
- •9.3. Прямоугольная аксонометрическая проекция и ее свойства.
- •9.4. Стандартные аксонометрические системы.
- •9.5. Прямоугольная диметрия.
- •9.6. Изображение окружности в ортогональной аксонометрии.
- •9.7.Косоугольные аксонометрические проекции.
- •9.8. Построение аксонометрической проекции фигуры, заданной ее комплексным чертежом.
- •Приложение I. Задачи по начертательной геометрии.
- •1. Задачи к теме: «Точка, прямая, плоскость»
- •1.1. Центральные и параллельные проекции.
- •1.2. Прямоугольные проекции.
- •1.2.1. Точка на чертеже Монжа.
- •1.2.2. Прямая линия.
- •1.2.3. Плоскость
- •2. Упражнения и задачи к теме: «Кривые поверхности. Точка на поверхности»
- •3. Задачи к теме: «Способы преобразования»
- •3.1. Способ замены плоскостей проекций.
- •3.2 Вращение вокруг проецирующей прямой
- •3.3 Вращение вокруг линии уровня.
- •3.4 Плоскопараллельное движение
- •3.5 Применение способов преобразования комплексного чертежа
- •4. Позиционные задачи
- •5.Многогранники. Позиционные задачи на многогранники
- •Кривые поверхности.
- •6.2. Пересечение кривой поверхности с прямой линией.
- •6.3. Взаимное пересечение кривых поверхностей.
- •6.3.1. Способ секущих плоскостей.
- •6.3.2. Способ концентрических сфер.
- •6.3.3. Способ эксцентрических сфер.
- •7. Метрические задачи
- •7.1. Определение натуральной величины отрезка прямой.
- •7.2. Перпендикулярность прямых.
- •7.3. Перпендикулярность прямой и плоскости.
- •7.4.Развертки поверхностей
- •8. Задачи к теме: «Аксонометрические проекции»
- •Приложение II Графические задания.
- •1. Методические указания по выполнению заданий.
- •1.1. Общие требования.
- •1.2. Порядок сдачи заданий.
- •2. Задание 1 (эпюр №1). Тема: «Точка, прямая, плоскость. Позиционные и метрические задачи».
- •2.1. Указания по выполнению задания.
- •2.1.1. План решения задачи №1.
- •2.1.2. План решения задачи №2.
- •2.1.3. План решения задачи №3.
- •2.2. Варианты задания (эпюр №1).
- •2.3. Контрольные вопросы (эпюр №1).
- •3. Задание 2 (эпюр №2).
- •3.2. План решения задачи №1.
- •3.2.1. Сечение многогранника плоскостью.
- •3.2.2. Пересечение поверхности вращения плоскостью.
- •3.2.3. Построение полной развертки усеченной части конуса.
- •3.2.4. Варианты заданий (эпюр №2).
- •3.2.5. Образец выполнения эпюра №2.
- •3.2.6. Контрольные вопросы (эпюр №2).
- •4. Задание 3 (эпюр №3). Тема: «Взаимное пересечение кривых поверхностей методом вспомогательных секущих плоскостей и вспомогательных секущих сфер».
- •4.1. Указания по выполнению задания.
- •4.1.1. Указания к оформлению.
- •4.2. Способ секущих плоскостей.
- •4.3. Следствие из вспомогательной теоремы.
- •4.4. Способ вспомогательных секущих сфер.
- •Варианты заданий на способ
- •Приложение III Тесты Тест № 1: «Комплексный чертеж точки»
- •Тест №2: «Комплексный чертеж прямых общего и частного положения»
- •Тест №3: «Взаимное положение двух прямых»
- •Тест №4: «Комплексный чертеж плоскости общего и частного положения»
- •Тест №5: «Многогранники»
- •Тест №6: «Многогранники. Точка и прямая на поверхности»
- •Тест №7: «Кривые поверхности»
- •Тест №8: «Точка на поверхности»
- •Тест №9: «Способ замены плоскостей проекций»
- •Тест №10: «Способ вращения вокруг проецирующей прямой»
- •1 2 3
- •Тест №12: «Пересечение многогранника плоскостью»
- •Тест №13: «Пересечение многогранника с прямой линией»
- •Тесть №14: «Пересечение многогранников»
- •1. Четыре 2. Шесть 3. Два 4. Пять
- •Тест №15: «Пересечение кривой поверхности плоскостью»
- •Тест №16: «Пересечение кривой поверхности с прямой линией»
- •Тест №17: «Взаимное пересечение кривых поверхностей»
- •Тест №18: «Способ вспомогательных секущих сфер»
- •Тест №19: «Метрические задачи на прямую»
- •Тест №20: «Перпендикулярность прямых и плоскостей»
- •Тест №21: «Развертки многогранников»
- •Тест №22: «Развертки кривых поверхностей»
- •Тест №23: «Аксонометрические проекции»
- •Тест №24: «Аксонометрия точки и прямой»
- •Ответы к тестам.
- •Вопросы к экзамену по дисциплине «Начертательная геометрия»
- •Список используемой литературы
3.2.3. Построение полной развертки усеченной части конуса.
Полная развертка усеченной части конуса т. е. части, находящейся за секущей плоскостью состоит из развертки боковой поверхности, к которой присоединяют натуральные величины сечения и основания конуса (рис. 241).
Развертка боковой поверхности конуса в данном примере представляет собой сектор круга, радиус которого равен образующей прямого кругового конуса. Угол сектора определяется по формуле:
φ = (R/L) ∙ 360
где R – радиус окружности основания конуса,
L – длина образующей конуса.
Для нанесения на развертку линии сечения делят дугу сектора на 12 частей и проводят образующие 1-S; 2-S;... 12S; на фронтальных проекциях точек (I4; II4; III4 ...) проводят прямые, параллельные основанию конуса, до пересечения с контурной образующей 124S4, что равносильно повороту образующих в положение, при котором они будут параллельными плоскости П4. Полученные точки (I4’; II4’; III4’ ...) с контурной образующей переносят на соответствующие образующие развертки (SI = S4I4’; SII = S4II4’...).
На практике построение боковой поверхности развертки конуса заменяется разверткой правильной двенадцатигранной пирамиды, вписанной в заданный конус, тогда не вычисляя величину угла φ, можно определить длину дуги сектора путем откладывания на нее 12 раз хорды, стягивающей 1/12 часть окружности основания конуса
(11-21 = 1 -2 = 2-3 = ...)
На рис. 241 показана полная развертка усеченного конуса с помощью 12 образующих, замененных ребрами двенадцатигранной правильной пирамиды.
Рис. 241
В заключение следует отметить, следующее:
1) Если секущая плоскость проходит через вершину конуса, то она пересекает боковую поверхность его по двум образующим (прямым линиям);
2)
Если секущая плоскость не проходит
через вершину конуса и пересекает все
образующие одной полости поверхности,
или, иначе, не параллельна ни одной
из образующих конуса, то в пересечении
получается эллипс или часть эллипса; в
этом случае
угол
между секущей плоскостью и осью конуса
больше угла между этой осью и образующей
конуса (на рис. 240
α
будет больше
β);
3)
Если секущая плоскость параллельна
только одной из образующих конуса,
то в сечении получается парабола (в этом
случае на рис. 240
α
будет равен
β);
4)
Если секущая плоскость параллельна
двум образующим конуса, то в сечении
получается гипербола (в этом случае на
рис. 240
α
будет меньше
β):
5) Если секущая плоскость перпендикулярна к оси конуса вращения, то в сечении получается окружность.
Кривые линии, получаемые от пересечения поверхности конуса второго порядка различными плоскостями – эллипс, парабола, гипербола и окружность, называются коническими сечениями.
3.2.4. Варианты заданий (эпюр №2).
3.2.5. Образец выполнения эпюра №2.
Рис. 242
3.2.6. Контрольные вопросы (эпюр №2).
Что называется многогранником?
Что называется пирамидой, призмой?
В чем состоит алгоритм построения линии пересечения многогранника с плоскостью общего положения?
Как найти натуральную величину сечения многогранника плоскостью?
Что называется разверткой многогранной поверхности?
К чему сводится построение развертки многогранника?
Что называется поверхностью вращения?
Какие поверхности вращения называются поверхностями вращения второго порядка?
Укажите общую схему определения линии пересечения кривой поверхности плоскостью?
Какие точки линии пересечения поверхности плоскостью называются главными (опорными)?
Укажите условия, при которых в сечении конуса вращения плоскостью получается окружность, эллипс, парабола, пересекающиеся прямые?
Что называется разверткой поверхности?
Какие поверхности называются развертывающимися и какие неразвертывающимися?
Укажите основные свойства разверток.
Что является разверткой цилиндра вращения и конуса вращения?
Как соединить кратчайшим путем две точки, лежащие на поверхностях цилиндра вращения и конуса вращения?