
- •М.М. Харах
- •Предисловие
- •Условные обозначения
- •Введение.
- •Предмет начертательной геометрии.
- •Центральная и параллельная проекции.
- •Свойства параллельной проекции.
- •Комплексный чертеж точки, прямой линии и плоской фигуры.
- •Ортогональное проецирование. Эпюр Монжа.
- •Связь между прямоугольными проекциями точки и ее ортогональными координатами.
- •Прямая линия. Плоскости.
- •Задание и изображение прямой.
- •Задание и изображение плоскости.
- •Прямые и плоскости частного положения.
- •Проецирующие прямая и плоскость.
- •Прямые и плоскости уровня.
- •Многогранники.
- •Основные понятия и определения. Изображение многогранников на чертеже.
- •Кривые линии и их проекционные свойства.
- •Основные понятия и определения.
- •Пространственные кривые линии.
- •Цилиндрическая винтовая линия.
- •Обводы.
- •Алгоритм построения обвода из дуг окружностей.
- •Алгоритм построения обводов из дуг кривых второго порядка.
- •Кривые поверхности. Их образование и задание на чертеже. Основные понятия и определения.
- •Очертание поверхности.
- •Систематизация поверхностей.
- •Поверхности вращения.
- •Построение главного медиана поверхности вращения.
- •Поверхности вращения второго порядка.
- •Развертывающиеся линейчатые поверхности.
- •Линейчатые поверхности с плоскостью параллелизма.
- •Винтовые поверхности.
- •Прямой геликоид.
- •Наклонный геликоид.
- •Способы преобразования комплексного чертежа.
- •Способ замены плоскостей проекций.
- •Вращение.
- •Вращение вокруг проецирующей прямой.
- •Вращение вокруг линии уровня.
- •Вращение без указания оси вращения. (Способ плоскопараллельного движения).
- •Позиционные задачи.
- •Первая основная позиционная задача.
- •Пересечение двух плоскостей.
- •Пересечение многогранника плоскостью.
- •Пересечение прямой с поверхностью многогранника.
- •Взаимное пересечение многогранников.
- •7.6. Пересечение кривой поверхности плоскостью.
- •7.7. Пересечение прямой линии с кривой поверхностью.
- •7.8. Взаимное пересечение кривых поверхностей.
- •7.8.1. Способ вспомогательных секущих плоскостей.
- •7.8.2. Способ вспомогательных секущих сфер.
- •7.8.2.1. Способ концентрических сфер.
- •7.8.2.2. Способ эксцентрических сфер.
- •Вопросы для самопроверки.
- •Метрические задачи.
- •Определение натуральной величины отрезка прямой способом прямоугольного треугольника.
- •Перпендикулярность двух прямых, прямой и плоскости.
- •Развертки поверхностей.
- •Развертки многогранников.
- •8.3.2. Построение приближенных разверток развертывающихся поверхностей.
- •8.3.3. Условные развертки неразвертывающихся поверхностей.
- •8.3.4. Построение развертки методом нормального сечения.
- •8.3.5.Построение развертки методом раскатки.
- •8.3.6. Применение разверток в технике.
- •Вопросы для самопроверки.
- •9. Аксонометрические проекции.
- •9.1. Основные понятия и определения.
- •9.2. Основная теорема аксонометрии (теорема Польке).
- •9.3. Прямоугольная аксонометрическая проекция и ее свойства.
- •9.4. Стандартные аксонометрические системы.
- •9.5. Прямоугольная диметрия.
- •9.6. Изображение окружности в ортогональной аксонометрии.
- •9.7.Косоугольные аксонометрические проекции.
- •9.8. Построение аксонометрической проекции фигуры, заданной ее комплексным чертежом.
- •Приложение I. Задачи по начертательной геометрии.
- •1. Задачи к теме: «Точка, прямая, плоскость»
- •1.1. Центральные и параллельные проекции.
- •1.2. Прямоугольные проекции.
- •1.2.1. Точка на чертеже Монжа.
- •1.2.2. Прямая линия.
- •1.2.3. Плоскость
- •2. Упражнения и задачи к теме: «Кривые поверхности. Точка на поверхности»
- •3. Задачи к теме: «Способы преобразования»
- •3.1. Способ замены плоскостей проекций.
- •3.2 Вращение вокруг проецирующей прямой
- •3.3 Вращение вокруг линии уровня.
- •3.4 Плоскопараллельное движение
- •3.5 Применение способов преобразования комплексного чертежа
- •4. Позиционные задачи
- •5.Многогранники. Позиционные задачи на многогранники
- •Кривые поверхности.
- •6.2. Пересечение кривой поверхности с прямой линией.
- •6.3. Взаимное пересечение кривых поверхностей.
- •6.3.1. Способ секущих плоскостей.
- •6.3.2. Способ концентрических сфер.
- •6.3.3. Способ эксцентрических сфер.
- •7. Метрические задачи
- •7.1. Определение натуральной величины отрезка прямой.
- •7.2. Перпендикулярность прямых.
- •7.3. Перпендикулярность прямой и плоскости.
- •7.4.Развертки поверхностей
- •8. Задачи к теме: «Аксонометрические проекции»
- •Приложение II Графические задания.
- •1. Методические указания по выполнению заданий.
- •1.1. Общие требования.
- •1.2. Порядок сдачи заданий.
- •2. Задание 1 (эпюр №1). Тема: «Точка, прямая, плоскость. Позиционные и метрические задачи».
- •2.1. Указания по выполнению задания.
- •2.1.1. План решения задачи №1.
- •2.1.2. План решения задачи №2.
- •2.1.3. План решения задачи №3.
- •2.2. Варианты задания (эпюр №1).
- •2.3. Контрольные вопросы (эпюр №1).
- •3. Задание 2 (эпюр №2).
- •3.2. План решения задачи №1.
- •3.2.1. Сечение многогранника плоскостью.
- •3.2.2. Пересечение поверхности вращения плоскостью.
- •3.2.3. Построение полной развертки усеченной части конуса.
- •3.2.4. Варианты заданий (эпюр №2).
- •3.2.5. Образец выполнения эпюра №2.
- •3.2.6. Контрольные вопросы (эпюр №2).
- •4. Задание 3 (эпюр №3). Тема: «Взаимное пересечение кривых поверхностей методом вспомогательных секущих плоскостей и вспомогательных секущих сфер».
- •4.1. Указания по выполнению задания.
- •4.1.1. Указания к оформлению.
- •4.2. Способ секущих плоскостей.
- •4.3. Следствие из вспомогательной теоремы.
- •4.4. Способ вспомогательных секущих сфер.
- •Варианты заданий на способ
- •Приложение III Тесты Тест № 1: «Комплексный чертеж точки»
- •Тест №2: «Комплексный чертеж прямых общего и частного положения»
- •Тест №3: «Взаимное положение двух прямых»
- •Тест №4: «Комплексный чертеж плоскости общего и частного положения»
- •Тест №5: «Многогранники»
- •Тест №6: «Многогранники. Точка и прямая на поверхности»
- •Тест №7: «Кривые поверхности»
- •Тест №8: «Точка на поверхности»
- •Тест №9: «Способ замены плоскостей проекций»
- •Тест №10: «Способ вращения вокруг проецирующей прямой»
- •1 2 3
- •Тест №12: «Пересечение многогранника плоскостью»
- •Тест №13: «Пересечение многогранника с прямой линией»
- •Тесть №14: «Пересечение многогранников»
- •1. Четыре 2. Шесть 3. Два 4. Пять
- •Тест №15: «Пересечение кривой поверхности плоскостью»
- •Тест №16: «Пересечение кривой поверхности с прямой линией»
- •Тест №17: «Взаимное пересечение кривых поверхностей»
- •Тест №18: «Способ вспомогательных секущих сфер»
- •Тест №19: «Метрические задачи на прямую»
- •Тест №20: «Перпендикулярность прямых и плоскостей»
- •Тест №21: «Развертки многогранников»
- •Тест №22: «Развертки кривых поверхностей»
- •Тест №23: «Аксонометрические проекции»
- •Тест №24: «Аксонометрия точки и прямой»
- •Ответы к тестам.
- •Вопросы к экзамену по дисциплине «Начертательная геометрия»
- •Список используемой литературы
Центральная и параллельная проекции.
Выберем в пространстве некоторую произвольную плоскость П1 и назовем ее плоскостью проекций (рис. 1). Пусть S – некоторая точка пространства, не принадлежащая П1, которую примем за центр проекций. Выберем произвольную точку А, не принадлежащую плоскости П1 и не совпадающую с S.
Прямая, проходящая через точки S и А, называется проецирующим лучом. А1 – точка ее пересечения с П1 называется центральной проекцией точки А. Если точка S удаляется в бесконечность, то проецирующие лучи становятся параллельными между собой и мы приходим к параллельному проецированию (рис. 2).
Рис. 1
Свойства параллельной проекции.
Параллельная проекция точки есть точка.
Параллельная проекция прямой, в общем случае, есть прямая.
Если точка принадлежит прямой, то ее параллельная проекция будет принадлежать параллельной проекции этой прямой.
Отношение отрезков прямой линии равно отношению проекций этих отрезков.
Если две прямые в пространстве параллельны, то их параллельные проекции параллельны между собой.
Рис. 2
Эти свойства иллюстрирует рис. 2.
Комплексный чертеж точки, прямой линии и плоской фигуры.
Ортогональное проецирование. Эпюр Монжа.
Если направление проецирования перпендикулярно плоскости проекций, то такое проецирование называется прямоугольным или ортогональным (рис. 3).
Рис. 3 |
Так как одна ортогональная проекция точку в пространстве не определяет, то точку проецируют на две или большее число плоскостей проекций. Возьмем в пространстве две взаимно перпендикулярные плоскости: П1 – горизонтальная плоскость проекций и П2 – фронтальная плоскость проекций. |
Они пересекаются по прямой Ох, которая называется осью проекций. Пересекаясь между собой, эти плоскости образуют четыре двугранных угла или четыре четверти. Порядок их отсчета берется против часовой стрелки (рис. 4).
Возьмем точку А, лежащую в I-ой четверти, и построим ее ортогональные проекции на П1 и П2.
А1 называется горизонтальной проекцией точки, а А2 – ее фронтальная проекция.
Рис. 4
Плоскость АА1А12А2 перпендикулярна плоскостям П1 и П2, а потому пересекает их по прямым А1А12 и А2А12, которые перпендикулярны оси Ох и пересекаются между собой в точке А12, лежащей на оси Ох. Далее повернем плоскость П1 вокруг оси Ох в направлении, указанном стрелками так, чтобы передняя половина совпала с нижней полуплоскостью П2, а задняя половина П1 – с верхней полуплоскостью П2 (рис. 5).
Рис. 5 |
Полученное плоское изображение называется Эпюром Монжа или комплексным чертежом. Г. Монж – это французский ученый, инженер и архитектор, который является основателем начертательной геометрии.
|
Так как плоскости безграничны, то в дальнейшем прямоугольник, ограничивающий плоскости проекций, мы изображать не будем, и Эпюр Монжа будет выглядеть так, как на рис. 6.
|
Легко видеть, что горизонтальная А1 и фронтальная А2 проекции точки А располагаются на одном перпендикуляре к оси проекций Ох. Прямая А1А2 называется линией связи. Преимущество Эпюра Монжа в его простоте и удобоизмеримости. |
В самом деле, отрезок А2А12 характеризует расстояние от точки пространства до горизонтальной плоскости проекций и называется в начертательной геометрии высотой точки. Отрезок А1А12 характеризует расстояние от точки А до фронтальной плоскости проекций и называется глубиной точки А.