
- •Перевозка сжиженных газов морем
- •Оглавление
- •Основы химии газов строение атома. Периодическая таблица элементов
- •Масса атома
- •Закон авогадро
- •Классификация углеводородов
- •Основные химические свойства углеводородов полимеризация
- •Полимер
- •- (СнсНз-сн2)n –
- •Катализаторы
- •Ингибиторы
- •Пахучие вещества
- •Реакция углеводородов с водой - образование гидратов (slush)
- •Химическая совместимость газов
- •Неорганические газы
- •Транспортные характеристики газов общие положения
- •Основные группы газов, перевозимых морем
- •Химические грузы
- •Основные физические свойства газов
- •Воздействие низких температур (brittle fracture)
- •Переворачивание груза (rollover)
- •Статическое электричество
- •Основные опасности на танкерах и газовозах статическое электричество на танкерах и газовозах
- •IBce переносное оборудование, которое используется при работе в танках, должно быть надежно заземлено перед тем, как опускать его в танк или использовать в опасных зонах.
- •Способы уменьшения возникновения статических зарядов
- •Пожароопасность
- •Воспламеняемость
- •Классификация опасных грузов
- •Токсичность сжиженных газов и сопутствующих веществ
- •Предельно допустимая концентрация
- •Классификация токсинов
- •Пути проникновения токсинов в организм
- •Побочные опасности
- •Приборы контроля атмосферы танков типы приборов контроля атмосферы
- •Приборы для измерения взрывоопасных концентраций газов
- •Эксплозиметры
- •Интерферометр
- •Анализаторы содержания кислорода
- •Приборы и устройства для измерения концентрации токсичных газов
- •Перевод концентраций, выраженных в мг/м3, в ррм осуществляется следующим образом:
- •Молярная масса (г)
- •Перевод объемных концентраций, выраженных в ррм, в весовые осуществляется следующим образом:
- •Молярный объем (24,1 л)
- •Приборы для измерения точки росы
- •Состав сухого воздуха, %
- •Типы газовозов типы и группы газовозов
- •Газовозы напорного типа
- •Газовозы полунапорного типа
- •Газовозы-химовозы
- •Суда рефрижераторного типа
- •Суда для перевозки природного газа - метановозы
- •Конструктивные особенности газовозов
- •Защита грузовых емкостей от повреждений
- •Материал, используемый для изготовления танков
- •Изоляция грузовых танков
- •Основные системы газовозов
- •Специальные системы газовозов
- •Оборудование. Инструменты
- •Основы термодинамики сжиженных газов идеальный газ
- •Основы термодинамики
- •Расчет температуры смеси жидкой фазы груза
- •Взаимные превращения жидкостей и газов
- •Работа при изменении объема газа
- •Энтропия
- •Теплопроводность
- •Расчет изоляции грузовых танков
- •Диаграмма молье
- •Установки повторного сжижения газов принципы искусственного охлаждения
- •Циклы упсг
- •Каскадная упсг
- •Насосы грузовых систем газовозов основные понятия и определения
- •Математические основы расчета рабочих параметров насосов
- •Типы насосов грузовых систем газовозов
- •Напорные характеристики насосов
- •Напорные характеристики трубопроводов
- •Работа центробежных насосов в составе трубопроводов
- •Особенности действия грузовых насосов
- •Меры предосторожности при эксплуатации грузовых систем
- •Меры безопасности на газовозах общие принципы обеспечения безопасности на газовозах
- •Конструктивное обеспечение пожарной безопасности
- •1. Оборудование конструктивно безопасного типа исключает искрообразование в процессе его нормальной эксплуатация и питается от сетей пониженного напряжения.
- •Оборудование газовоза активными средствами пожаротушения
- •Системы обнаружения пожаров
- •Переносные средства пожаротушения
- •Дыхательные аппараты
- •Организационные мероприятия по обеспечению пожаробезопасности
- •Меры безопасности при выполнении судовых работ
- •Разрешение на выполнение «горячих» работ
- •Раздел 1.
- •Раздел 2.
- •Раздел 3.
- •Комментарии к «Разрешению на выполнение горячих работ»
- •Раздел 1.
- •Раздел 2.
- •Разрешение на выполнение холодных работ
- •Раздел 2.
- •Раздел 3.
- •Комментарии к «Разрешению на выполнение холодных работ»
- •Меры безопасности при выполнении судовых работ
- •Раздел 1.
- •Раздел 2.
- •Раздел 3.
- •Раздел 4. Записи о вошедших (подлежит заполнению лицом, контролирующим вход)
- •Раздел 5. Завершение работы (подлежит заполнению лицом, контролирующим вход)
- •Грузовые операции основные этапы обработки груза на борту судна
- •Расчет времени на погрузку
- •Выгрузка
- •Специальные правила
- •Замеры и подсчет груза. Грузовая документация общие положения
- •Особенности подсчета груза на газовозах
- •Плотность груза
- •Стандартные способы подсчета груза
- •Общие правила определения веса груза
- •Расчет газовой фазы груза
- •Перевод процентных соотношений смесей в весовые или объёмные соотношения, и наоборот
- •Подсчет линейной скорости потока жидкости
- •Грузовая документация
- •Методы замены атмосферы танка
- •Метод разбавления атмосферы (dilution method)
- •II Повторный запуск всего оборудования — дело долгое и хлопотное.
- •Организация процесса замены атмосферы танков
- •Смена груза и условия предъявления судна под погрузку
- •Мойка танков
- •Заключительная обработка поверхности танка
- •Аварийные мероприятия на газовозах аварийное планирование
- •Организация борьбы с пожарами
- •Инциденты с грузом
- •Операции с грузом
- •Подвижка судна у причала
- •Посадка на мель
- •Касание грунта
- •Столкновение
- •Аварийная перекачка груза с судна на судно
- •Подготовка экипажа к оставлению судна
- •Словарь терминов общепринятые сокращения
- •Приложения
- •Спецификации сюрвейерской компании sgs на некоторые сжиженные химические газы (можно использовать только как справочные данные)
- •Сжиженные и химические газы, включенные в igc кодекс
Взаимные превращения жидкостей и газов
В природе и в технике мы часто встречаемся с изменением агрегатного состояния вещества (рис. 57), в частности с превращением жидких и твердых тел в газообразное состояние. Для жидкостей существуют два способа перехода в газообразное состояние:
• испарение;
• кипение.
Испарение происходит с открытой, свободной поверхности, отделяющей жидкость от газа, например с поверхности жидкости в открытом сосуде, с поверхности водоема и т. д.
Испарение происходит при ЛЮБОЙ ТЕМПЕРАТУРЕ, но для каждой жидкости скорость испарения увеличивается с повышением температуры.
• Если испарение происходит в замкнутом сосуде, то температура во всех точках сосуда одинакова, а ее величина ниже, чем температура кипения. В таком случае внутри сосуда достигается состояние равновесия между жидкостью и паром, и процесс испарения прекращается с достижением в этом паре парциального давления насыщения, соответствующего температуре в сосуде.
• Если испарение происходит в открытом сосуде, равновесие не достигается практически никогда, а скорость испарения зависит от многих факторов. Обычно скорость испарения пропорциональна разности между давлением насыщенного пара при температуре испарения и действительным давлением пара над поверхностью жидкости.
• Если давление насыщенных паров жидкости и фактическое давление паров равны, испарение сопровождается обратным процессом, который называется конденсацией.
Конденсация — переход вещества из газообразного или парообразного состояния в жидкое.
При испарении молекулы, вылетевшие с поверхности жидкости, должны преодолеть силу притяжения соседних молекул, следовательно, совершить некоторую работу. Поэтому, чтобы произошло испарение, веществу необходимо сообщить некоторое количество теплоты, черпая ее из запаса внутренней энергии самой жидкости.
Количество теплоты, которое надо сообщить жидкости, находящейся при данной температуре и фиксированном давлении, чтобы преобразовать ее в пар при тех же условиях, называется СКРЫТОЙ ТЕПЛОТОЙ ИСПАРЕНИЯ (парообразования).
Эта величина обозначается
как r
и измеряется в Дж/кг. Если к испаряющейся
жидкости не подводить теплоту извне,
то она будет охлаждаться.
Рис. 57 Иллюстрация смена агрегатных состояний вещества.
Кипение. Второй способ преобразования жидкости в пар — кипение, которое отличается от испарения тем, что образование паров происходит во всем объёме жидкости.
Кипение становится возможным только в том случае, если давление насыщенных паров жидкости равно внешнему давлению.
Поэтому данная жидкость, находясь под определенным давлением, кипит при вполне конкретной температур.
Обычно температуру кипения той или иной жидкости, в том числе и сжиженных газов, приводят для атмосферного давления.
Пузырьки газа, возникающие в процессе кипения, насыщены парами груза:
pн
=pь
+
(ρ • g
• h),
где рb — барометрическое давление; h — высота столба жидкости; р — плотность жидкости; g — ускорение свободного падения; рb — давление насыщенных паров; ρ • g • h — давление столба жидкости.
‘ Когда давление насыщенного пара внутри пузырьков превышает давление на поверхности жидкости, пузырьки всплывают и лопаются. Жидкость начинает кипеть (рис. 38). Если увеличить давление над
жидкостью, то температура кипения увеличится, если давление понизить, то и температура кипения уменьшится. На практике это факт используется очень часто. Например, в паровых установках вода кипит при температуре 28 °С при давлении 65 бар, а в установках по производству дистиллированной воды вода кипит при температуре 40° С и при давлении насыщенных паров 0,0738 бар. На высоте около 5000 м
атмосферное давление составляет 513 мбар, что соответствует температре кипения Рис. 58. Условия, при которых воды 82° С. Простейший способ охладить до самой низкой температуры происходит кипение жидкости сжиженный газ — сделать так, чтобы его давление насыщенных паров ‘ было равно атмосферному давлению, т. е. сообщить атмосферу грузового танка с окружающей атмосферой, что и достигается при срабатывании предохранительного клапана на грузовом танке.
Для того чтобы подсчитать количество теплоты, необходимое для превращения жидкости любой массы в пар, нужно удельную теплоту парообразования г умножить на массу:
Q= r • т Дж.
Эту формулу часто используют при определении необходимого количества жидкого груза для захолаживания грузовых танков без судовой установки повторного сжижения (см. раздел «Подготовка грузовых танков»).