Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Baskakov Manual.doc
Скачиваний:
4014
Добавлен:
12.03.2016
Размер:
7.12 Mб
Скачать

Статическое электричество

Феномен статического электричества известен давно, и каждый из нас сталкивается с проявлениями его почти ежедневно. При одевании или снимании одежды из синтетического материала, контакте с экраном телевизора или компьютера зачастую возникает ощутимый электрический разряд. В современном мире эффект статического элект­ричества получил широкое практическое применение (печатные и копировальные аппараты, окраска). Однако раз­ряд статического электричества может привести и к трагическим последствиям.

Впервые возможности статического электричества вызывать возникновение взрыва и пожара были обнаружены в 1893 г. американцем Рихтером, который пытался улучшить процесс сухой химчистки одежды и попробовал ввести порошок магнезии в бензол, используемый в процессе чистки, для увеличения его токопроводности.

В топливной и химической индустрии проблему возникновения зарядов статического электричества начали глубо­ко изучать В начале 30-х гг., после нескольких взрывов на заводах компании SHELL. На морском же транспорте изучением этой проблемы занялись несколько позже, в середине 60-х гг., опять же после серии взрывов на танкерах, которые перевозили сырую нефть. Были проведены фундаментальные исследования в области возникновения зарядов статического электричества на танкерах при различных технологических операциях и определены международные тре­бования по предотвращению образования электростатических разрядов.

Рассмотрим природу образования электростатического заряда.

Причины возникновения зарядов статического электричества. Существует три этапа, последовательно приводящих к возникновению опасности воспламенения горючих смесей при воздействии статического электричества, а именно:

• разделение заряда;

• накопление заряда;

• разряд статического электричества.

Известно, что атомы состоят из положительно заряженного ядра, вокруг которого вращаются отрицательно заря­женные частицы — электроны. Сумма всех отрицательных зарядов в теле по абсолютному значению равна сумме всех положительных зарядов в нем, поэтому в целом тело электрически нейтрально и не имеет заряда.

Электроны, находящиеся на периферийных орбитах атома, могут сравнительно легко покидать свое место и переходить на орбиты атомов другого тела или вещества. Тот атом, который потеряет электроны, будет испытывать их недостаток и получит положительный заряд. Атом-же, на орбиты которого перейдет оторвавшийся электрон, будет иметь избыток электронов, а заряд его станет отрицательным. Иначе говоря, при перемещении электронов с орбиты одного атома на орбиту другого происходит перераспределение зарядов, и при этом один атом получает положительный заряд, а другой отрицательный. Такие заряженные атомы называются ионами.

При электризации тел заряды не создаются, а только разделяются: часть отрицательных зарядов переходит с одного тела на другое.

Например, при трении эбонитовой палочки о шерсть, эбонит получает отрицательный заряд, а шерсть заряжается положительно.

Перетекшие электронов происходит только в случае взаимодействия атомов с различной плотностью электронов.

Всякий раз, когда в контакт входят два неоднородных материала, на поверхности, разделяющей эти материалы, происходит разделение заряда. Эта поверхность может разделять два твердых тела, твердое тело и жидкость или две несмешивающиеся жидкости. На поверхности раздела заряд одного знака, например положительного, перемещается от материала А к материалу В таким образом, что эти материалы становятся соответственно положительно и отрица­тельно заряженными. Пока материалы А и В неподвижны и контактируют друг с другом, заряды находятся чрезвы­чайно близко друг к другу. В таком случае незначительная разность потенциалов между зарядами противоположного знака не представляет какой-либо угрозы.

Интенсивное разделение зарядов происходит в результате таких действий, как:

• прохождение потока жидкости через трубы или мелкоячеистые фильтры,

• осаждение частиц твердого тела или несмешивающейся жидкости через другую жидкость,

• выброс мелких капель или частиц из сопла,

• всплескивание или взбалтывание жидкости при ее соприкосновении с твердой поверхностью,

• сильное трение друг о друга некоторых материалов.

Когда заряды разъединяются, между ними образуется большая разность потенциалов. При этом в окружающем пространстве также происходит распределение разности потенциалов, иначе говоря, формируется электрическое поле (т. е. во время мойки танка при распылении жидкости электростатическое поле возникает во всем объеме танка).

Если в электростатическое поле поместить незаряженный проводник, то он получит примерно такой же потенци­ал, как и поле, в котором он находится. Более того, поле приводит в движение заряды внутри проводника, заряд одного знака притягивается полем к одному концу проводника, на другом же конце проводника формируется равный по величине заряд противоположного знака. Заряды, разделенные таким образом, называются индуцированными, они накапливаются в электростатическом поле.

Заряд может возникать и там, где не происходит непосредственного контакта между заряженными телами, а также при воздействии на материал другого заряженного тела, что вызывает формирование положительных и отрица­тельных ионов. Например, при прохождении грозового облака над высоким зданием или судном, в последних фор­мируются положительные и отрицательные ионы, хотя непосредственного контакта между материалами или зарядами не было. Это приводит к тому, что одно и то же вещество или тело может нести противоположные заряды.

Вокруг заряженного тела происходит формирование электрического поля, своего рода отображение простран­ства вокруг заряженного тела. В двух противоположных точках электрического поля определяется разность потенциа­лов в вольтах. Напряженность электрвстатнческвге пвля впределяется в вольтах на метр (В/м).

В однородном электрическом поле напряженность поля определяется как разность потенциала на метр. Величина напряженности поля определяет возможность возникновения разряда. В сухом воздухе искровой электрический раз­ряд может произойти при величине напряженности электрического поля около 3 000 000 В/м. Однако если поместить в поле заземленный проводник, то даже при слабой напряженности поля можно получить значительный электричес­кий разряд.

Накопление заряда. Ранее разделенные заряды стремятся вновь соединиться между собой и нейтрализовать друг друга. Этот процесс известен как релаксация заряда. Если один из материалов или оба эти материала, несущие электростатический заряд, обладают низкой токопроводностыо, то повторное соединение зарядов затруднено и дан­ный материал аккумулирует (накапливает) заряд на себе.

Время, в течение которого сохраняется заряд, характеризуется временем релаксации

данного материала, которое соотносится с его токопроводностью. Чем меньше токопроводность

материала, тем больше период релаксации заряда.

Если же проводимость материала высока, то заряды соединяются очень быстро, тем самым препятствуя процессу их разъединения, в результате чего происходит очень незначительное аккумулирование заряда или же он не аккумули­руется совсем. Материал с такой проводимостью может сохранять или аккумулировать заряд только в том случае, если он окружен диэлектриком. При этом скорость потери им заряда будет зависеть от времени релаксации диэлект­рика.

Можно сказать, что наиболее важным фактором, определяющим время релаксации материала, является его электропроводность.

Все материалы по степени их токопроводиости условно можно разделить на три основные группы.

Первая группа — проводники. К твердым проводникам относится большинство металлов, а к жидким — целый диапазон водных растворов солей, включая морскую воду. Человеческое тело, более чем на 60% состоящее из воды, также является проводником электрического тока. К важным свойствам жидких проводников относится не только их неспособность удерживать электрический заряд, если они не изолированы, но и почти мгновенное разряжение, если они изолированы и существует возможность электрического разряда. Иными словами, полученный заряд распростра­няется равномерно по всему материалу, а при соприкосновении с заземлением мгновенно исчезает.

Очень часто разряды между двумя проводниками происходят в виде искры, в таком случае они гораздо опаснее, чем разряды, возникающие между проводником и диэлектриком. При релаксации заряда между проводником и ди­электриком возникают не искровые, а коронные или кистевые разряды.

Вторая группа — диэлектрики или изоляторы. Если заряд возникает только в месте соприкосновения или разъеди­нения материалов, то такие материалы называются диэлектриками.

Заряженные диэлектрики доставляют заряд в место, где может произойти непосредственный контакт заряда с проводником. Сильно заряженные диэлектрики могут непосредственно инициировать воспламеняющие искры. Жид­кости рассматриваются как диэлектрики, если их проводимость менее 50 пикоСименсов на метр (пСм/м) с периодом релаксации не более 0,35 с. Такие жидкости зачастую называют аккумулирующими статическое электричество. К ним относятся чистые нефти и чистые нефтепродукты (дистилляты), сжиженные газы.

Третья группа представляет собой ряд жидкостей и твердых материалов с промежуточной токопроводностью. Яркий пример — темные нефти, сырые нефти, спирты, ацетон и др.

Когда напряженность электрического поля достигаетопределенной величины, может произойти разряд поля, который имеет различные формы. Для воспламенения паровоздушной смеси необходимо, чтобы электростатический разряд был достаточно мощным. Было установлено, что для воспламенения паровоздушной смеси пропана достаточ­но, чтобы между электродами произошел разряд с выделением энергии в 0,2 мДж, а для воспламенения паровоздуш­ной смеси аммиака потребуется разряд в 600 раз мощнее.

Существуют следующие формы электростатических разрядов.

Корона — ионное излучение голубоватого цвета. Его можно увидеть на острых углах или вантах при некоторых погодных условиях. Это сияние известно под названием «Огни Святого Эльма». Такое излучение не несет в себе достаточно энергии для возникновения пламени.

Северное, или полярное, сияние — это слабые лучи, сформированные из очень маленьких искр, испускаемых заряженными острыми углами или выступами конструкций в направлении заряженных облаков или тумана. Такое свечение может возникнуть в танках супертанкеров, оно также не несет в себе достаточной энергии для возникнове­ния пламени.

Искра возникает только в том случае, если напряженность электрического поля достигает некоторой критической величины. Ионный луч увеличивается с повышением напряженности поля, и конечный результат такого увеличения — возникновение настоящей искры. При большой напряженности поля образуется разряд, более известный как мол­ния. Однако если мы поместим в электрическое поле заземленный проводник, то возникнет искровой разряд, доста­точный для воспламенения смеси даже при малых величинах напряженности поля.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]