Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
POSOBIE_dlya_MBF_3_var_doc.doc
Скачиваний:
163
Добавлен:
11.03.2016
Размер:
2.14 Mб
Скачать

12.3. Природа химической связи в комплексных соединениях

Теория метода валентных связей объясняет образование комплексов за счёт донорно-акцепторной, или координационной, связи. Эта связь, как частный случай ковалентной связи, осуществляется между атомом-комплексо­образователем, имеющим свободные орбитали и являющимся акцептором электронов, и лигандами, имеющими неподелённые электронные пары, донорами которых они являются. Донором может быть и комплексообразователь. Когда координационная связь образована, она практически ничем не отличается от обычной ковалентной связи. Например, в комплексном ионе [BF4]- донором электронной пары служит анион фтора, а акцептором — атом бора в молекуле BF3, обладающий незанятой орбиталью внешнего электронного слоя и переходящий при комплексообразовании в состояние sp3-гибридизации (конфигурация иона — тетраэдр).

Для объяснения строения простых и комплексных частиц с центральными атомами d-элементов, имеющими незавершённый внутренний (n-1)d–подуровень, используют метод ВС, дополненный теорией кристаллического поля.

Теория кристаллического поля

В свободном атоме d-элемента подуровень (n–1)d пятикратно вырожден, т.е. все пять (n–1)d-АО имеют одинаковую энергию. Под воздействием электростатического поля лигандов энергия пяти (n–1)d-АО комплексообразователя дифференцируется и пятикратное вырождение снимается.

При октаэдрическом расположении лигандов вокруг центрального атома наибольшее отталкивание испытывают электроны, находящиеся на орбиталях dz2 и dx2-y2 , направленных к лигандам, поэтому их энергия будет более высокой, чем у электронов, находящихся на орбиталях dxy,dxz,dyz, расположенных между лигандами. Таким образом, если в свободном или находящемся в сферическом поле пять d-орбиталей имеют одинаковую энергию, то в октаэдрическом поле лигандов они разделяются на две группы с разными энергиями — происходит расщепление на два энергетических подуровня: более высокий eg (соответствует орбиталям dz2,dx2-y2 ) и более низкий t2g( соответствует орбиталям dxy,dxz,dyz). Следовательно, вырождение пяти d –орбиталей иона снимается частично, что приводит к образованию двукратно вырожденного уровня eg и трёхкратно вырожденного уровня t2g.

Разница в энергиях уровней eg и t2g называется энергией расщепления .

Величина расщепления зависит от природы лиганда, что определяется положением лиганда в спектрохимическом ряду, определяемым экспериментально:

I < Br < SCN- < Cl <NO3- < F < OH < ONO- < C­2O42 < H2O < NCS < CH3CN < NH3 < глицин < пиридин < этилендиамин< NC- < NO2 < CN < CO.

Принято считать, что левее аммиака в спектрохимическом ряду располагаются лиганды “слабого поля”, а правее — лиганды “сильного поля”, дающие при прочих равных условиях большую величину расщепления.

При наличии в ионе-комплексообразователе числа электронов, превышающего число орбиталей с низкой энергией, возможны два варианта заполнения орбиталей электронами. В случае слабого поля энергетически более выгодным оказывается равномерное распределение d-электронов по всем d-орбиталям в соответствии с правилом Хунда. В этом случае центральный ион сохраняет высокое значение спина, так что образуется высокоспиновый парамагнитный комплекс (например,[FeF6]3) → см. рис.33.

В случае же сильного поля энергетически более выгодным будет размещение максимального числа электронов на t2g -орбиталях, при этом образуется низкоспиновый диамагнитный комплекс (например, [Fe(CN))6]3-)→ см.рис.34. .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]