
- •Российский национальный исследовательский
- •1. Некоторые основные понятия и законы химии
- •2. Энергетика химических реакций
- •Упражнения и задачи для самостоятельного решения
- •3. Химическое равновесие
- •3.1. Основные понятия и признаки химического равновесия
- •3.2. Смещение химического равновесия
- •Упражнения и задачи для самостоятельного решения
- •4. Растворы
- •4.1. Основные понятия. Образование растворов
- •4.2. Способы выражения состава растворов
- •Задачи для самостоятельного решения
- •5. Равновесия в растворах электролитов
- •Упражнения и задачи для самостоятельного решения
- •6. Растворы сильных электролитов
- •Упражнения и задачи для самостоятельного решения
- •7. Буферные растворы
- •7.1. Основные понятия
- •7.2. Свойства буферных растворов
- •Упражнения и задачи для самостоятельного решения
- •8. Равновесия в системе осадок― раствор
- •Упражнения и задачи для самостоятельного решения
- •9. Строение атома
- •Принципы заполнения атомных орбиталей электронами
- •Упражнения для самостоятельного решения
- •10. Окислительно - восстановительные реакции
- •Окислители и восстановители
- •Составление уравнений окислительно-восстановительных реакций
- •Влияние среды реакции
- •Основные схемы электронно-ионных полуреакций в различных средах
- •Влияние среды на состав продуктов реакции
- •Влияние концентрации на состав продуктов реакции
- •Реакции самоокисления-самовосстановления
- •Окислительно-восстановительные реакции с участием органических веществ.
- •Упражнения для самостоятельного решения
- •11. Химическая связь
- •11.1. Ковалентная связь Метод валентных связей
- •Механизмы образования химической связи
- •Гибридизация атомных орбиталей и геометрия молекул
- •Делокализованная π-связь
- •Метод молекулярных орбиталей
- •Энергетические диаграммы двухатомных частиц, образованных элементами первого периода
- •Гетероядерные двухатомные молекулы образованные элементами разных периодов.
- •Энергетические диаграммы двухатомных частиц, образованных элементами второго периода
- •Многоатомные молекулы
- •Свойства ковалентной связи
- •Насыщаемость
- •Направленность связи
- •Длина и энергия связи
- •Полярность связи
- •11.2. Ионная связь
- •Поляризация и поляризуемость ионов
- •Б) протон, внедряясь в кислородный анион, снижает его заряд и уменьшает деформируемость; поэтому hco3- и hso3- менее устойчивы, чем co32- и so32-
- •Влияние водородной связи на физические и химические свойства водородных соединений.
- •Эти связи часто образуются в хелатных комплексах, как, например, в бис(диметилглиоксимато)никелеIi(см.Рис.29).
- •11.4. Металлическая связь
- •11.5. Межмолекулярные взаимодействия
- •11.6. Химическая связь в твердых телах
- •Упражнения для самостоятельного решения
- •12. Комплексные соединения
- •12.1. Основные понятия
- •12.2. Строение комплексных соединений
- •12.3. Природа химической связи в комплексных соединениях
- •Теория кристаллического поля
- •Теория поля лигандов
- •12.4. Устойчивость комплексных соединений
- •12.5. Свойства комплексных соединений Окраска комплексных соединений
- •Магнитные свойства комплексных соединений
- •Кислотно-основные свойства комплексных соединений
- •Упражнения и задачи для самостоятельного решения
- •Приложение
- •Содержание
Эти связи часто образуются в хелатных комплексах, как, например, в бис(диметилглиоксимато)никелеIi(см.Рис.29).
Рис.29 Бис(диметилглиоксимато) никель II
Водородные связи в значительной степени определяют устойчивость конформации белков. Внутримолекулярные водородные связи между группами >C=O и >N−H полипептидной цепи поддерживают
α–спиральную структуру белка. Межмолекулярные водородные связи двух полипептидных цепей определеяют образование слоистых белковых структур. Молекулы ДНК состоят из трёх частей: фосфатных групп, углеводных остатков(дезоксирибоза) и пуриновых и пиримидиновых оснований(аденин, цитозин, гуанин, тимин). Остов молекулы составляют чередующиеся углеводные и фосфатные остатки. С каждым углеводным о соединено пуриновое или пиримидиновое основание.Двойная спираль образуется за счёт того, что водородные связи между основаниями удерживают вместе две отдельные спирали.Основания ориентированы примерно перпендикулярно спирали.Каждое основание может образовать прочную связь только с одним из четырёх оснований, встречающихся в ДНК.Эта специфичность оснований составляет основу генетического кода.
Рис. 30 Строение молекулы ДНК
11.4. Металлическая связь
В отличие от ковалентных и ионных соединений небольшое число валентных электронов в металлах одновременно связывают большое число атомных ядер. В металлах имеет место сильно делокализованная связь которая называется металлической. Эта связь является достаточно прочной, так как большинство металлов имеет высокую температуру плавления. Валентные электроны достаточно свободно движутся в решетке металлов, электростатически взаимодействуя с положительно заряженными ионами. Делокализированные электроны обусловливают высокую тепло- и электропроводность.
11.5. Межмолекулярные взаимодействия
Межмолекулярное взаимодействие представляет взаимодействие диполей. В зависимости отхарактера диполей различают три типа межмолекулярнолго взаимодействия: ориентационное, индукционное и дисперсионное. Эти виды взаимодействия обычно называют вандерваальсовыми.
Ориентационное взаимодействие возникает между полярными молекулами (обладающими постоянными дипольными моментами). Энергия ориентационного взаимодействия возрастает с увеличением полярности молекул и уменьшается с повышением температуры, так как с повышением температуры усиливается тепловое хаотическое движение молекул,что нарушает их ориентацию.
Индукционное взаимодействие возникаетмежду полярной и неполярной молекулами. Под влиянием электрическокого поля создаваемого полярной молекулой в неполярной молекуле индуцируется диполь. Взаимодействием постоянного диполя с индуциированным называется индукционным или поляризационным. Энергия индукционного взаимодействия возрастает с увеличением дипольного момента полярной молекулы и поляризуемсости неполярной молекулы.
Симметричное распределение зарядов в неполярной частице связано с усреднением по времени, но вследствие движения электронов и колебания ядер в частице, возникает мгновенное несимметричное распределение зарядов—мгновенный диполь. Мгновенный диполь возникший в одной частице индуцирует такой же мгновенный диполь в соседней частице и взаимодействует с ним. Такое взаимодействие носит название дисперсионного. Энергия дисперсионного взаимодействия тем выше, чем чаще сближаются частицы и чем легче деформируются их электронные оболочки.
В общем энергия межмолекулярного взаимодействия складывается из суммы энегий ориентационного индукционного и дисперсионного взаимодействий:
Еобщ. = Еор. + Е инд. + Едисп.
Для сильно полярных и хорошо поляризующихся молекул наибольший вклад дают два первых слагаемых, однако играет роль и дисперсионное взаимодействие, которое преобладает у малополярных молекул, а у неполярных является единственно возможным.
Дисперсионные силы играют важную роль в поддержании структуры белка. Например, третичная структура белков в значительной мере определяется контактом между неполярными группами. Термин гидрофобное взаимодействие использцуется в биохимии для описания взаимодействий между неполярными группами валина, лейцина, изолейцина, метионина, фенилаланина и триптофана в белках.