Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Пособие МОГеодВим.docx
Скачиваний:
52
Добавлен:
28.02.2016
Размер:
3.31 Mб
Скачать

Додаткові джерела інформації

  1. Петров, Н.С. Основы теории ошибок измерений [Текст] учебное пособие / Н.С.Петров. – М.: Литература по горному делу. 1963. – 73 с.

  2. Войславский, Л.К. Теория математической обработки геодезических измерений. Часть 1. Теория погрешностей измерений [Текст] учебно-методическое пособие (для студентов 2 курса дневной формы обучения спец. 7.070908 «Геоинформационные системы и технологии») / Л.К. Войславский. – Х.: ХНАГХ, 2006. – 64 с.

  3. Зазуляк, П.М. Основи математичного опрацювання геодезичних вимірів [Текст] навчальний посібник / П.М. Зазуляк, В.І. Гавриш, Е.М. Євсєєва, М.Д.Йосипчук. – Львів: Видавництво «Растр-7», 2007. – 408 с.

  4. Кемниц, Ю.В. Теория ошибок измерений [Текст]/ Ю.В.Кемниц. – М.: Недра, 1962. – 175 с.

4. Оцінка точності функцій безпосередньо виміряних величин

4.1. Основна теорема теорії похибок

У геодезичній практиці переважно використовуються не окремі безпосередньо зміряні величини, а їх функції, тобто непрямі вимірювання. Так, наприклад, нахил лінії визначають як відношення безпосередньо виміряного перевищення і довжини лінії. Довжина лінії, недоступної для безпосереднього вимірювання, обчислюється із розв’язання трикутника, у якого безпосередньо виміряні базисна сторона і горизонтальні кути. Площу земельної ділянки прямокутної форми обчислюють як добуток безпосередньо виміряної довжини і ширини ділянки. Перелік подібних прикладів можна продовжувати. Звідси виникає завдання оцінювання точності функції виміряних величин за відомими стандартами σ або средньоквадратичними похибками m безпосередньо виміряних аргументів. Для розв’язання цього завдання доведена теорема.

Теорема 4.1. Якщо певна безперервна функція, що диференціюється за всіма аргументами

(4.1)

аргументи якої x1, x2,…, xt – незалежні результати безпосередніх вимірів певних величин X1, X2,…, Xt, виконаних в умовах, що характеризуються стандартами σ1, σ2,…, σt, то стандарт цієї функції буде дорівнювати

де – частинні похідні функції (4.1) за змінними x1, x2,…, xt ,

Доказ. З курсу математичного аналізу відомо, що повний диференціал функції (4.1) дорівнює

Рис. 4.1 Графічна інтерпретація величин вимірів і їх похибок

Припустимо, що величини x1, x2,…, xt виміряні n разів. При цьому результати вимірів містять випадкові похибки, які позначимо:

Наочно|наглядний| в графічній формі величини вимірів|вимірів| і їх похибки, ілюструються рис. 4.1.

Вважаючи, що похибки Δі є приростами величин хі (малими величинами), то на підставі запису повного диференціала (4.3) можна записати систему рівнянь у частинних похідних, де кожне з рівнянь характеризує зміну похибок у серії вимірів величин x1, x2,…, xt

… (4.4)

Відзначимо, що кожен елемент , ,…,, системи рівнянь має константу . Для того, щоб точно оцінити функції виміряних величин y = f (x1, x2,…, xt) з використанням стандарту σ або середньоквадратичної похибки m (див. формулу 2.14 і 3.6) необхідно здійснити наступні перетворення з системою рівнянь (4.4). Звести у квадрат праві та ліві частини кожного з рівнянь. Отримаємо

… (4.5)

Тепер кожне з рівнянь є сумою квадратів. Для того, щоб привести праві частини рівнянь до вигляду відомих формул скороченого множення многочленів додамо до кожного рівняння суми добутків, що складаються з двох пар у кожному многочлені. Отримаємо

… (4.6)

Підсумуємо змінні лівої і правої частини|частки| отриманих|одержувати| многочленів і запишемо їх в символах Гаусса К.Ф.

… (4.7)

Розділимо отримані суми на n і запишемо остаточний вираз, що враховує всі змінні (похибки Δi) системи рівнянь (4.4)

Припускаючи, що n → ∞, знайдемо межі лівої і правої частини отриманого виразу. На основі властивості незалежності (2.13) маємо наступне:

Враховуючи властивість розсіювання (2.14) для правої і лівої частини|частки| рівняння (4.8) справедливо записати

Спростимо вираз (4.8), відкинувши подвійні суми , оскільки вираз (4.9) їх перетворює на нуль, і, застосовуючи до його лівої частини граничне значення формули (4.10), а до правої частини – граничні значення формули (4.11) і добувши з них квадратний корінь, отримаємо вираз (4.2), що і потрібно було довести.