Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
77
Добавлен:
08.06.2015
Размер:
3.44 Mб
Скачать

6.6.5. Отражение волн. Стоячие волны

Очень важный случай интерференции наблюдается при наложении двух встречных плоских волн с одинаковой амплитудой. Возникающий в результате колебательный процесс называется стоячей волной.

Практически, стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная, налагаясь друг на друга, дают стоячую волну (рис.6.25).

Напишем уравнение двух плоских волн, распространяющихся в противоположных направлениях:

- падающей волны – ;

- отраженной волны – .

Сложим вместе оба уравнения:

y=y1+y2;

.

y

2A

O t

-2A воздух вода

Рис.6.25

Используя формулу преобразования

,

получим

или . (6.56)

Это уравнение и есть уравнение стоячей волны. Из него видно, что в каждой точке стоячей волны происходят колебания той же частоты, что и у встречных волн, а амплитуда оказывается зависящей от x:

.

В точках, где (четному числу) амплитуда достигает максимума А0=2А. Эти точки называются пучностями стоячей волны. Координаты пучности:

,

откуда , где n=0,1,2... .

В точках, где (нечетному числу), амплитуда колебаний обращается в нуль. Эти точки называются узлами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают.

Координаты узлов:

.

Найдем расстояние между соседними пучностями и узлами

;

.

Таким образом, расстояние между соседними пучностями и соседними узлами одинаково и равно половине длины волны.

Множитель в уравнении (6.56) при переходе через нулевое положение меняет знак.

В соответствии с этим фаза колебаний по разные стороны от узла отличаются на , т.е. точки, лежащие по разные стороны от узла колеблются в противофазе. Все точки, заключенные между двумя соседними узлами колеблются синфазно.

ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ

7. Молекулярно-кинетическая теория

7.1. Статистический метод исследования. Термодинамический метод исследования. Термодинамические параметры. Равновесное состояние и процессы их изображения на термодинамических диаграммах

Молекулярная физика представляет собой раздел физики, изучающий строение и свойства вещества, исходя из так называемых молекулярно-кинетических представлений. Согласно этим представлениям, любое тело – твердое, жидкое или газообразное – состоит из большого количества весьма малых обособленных частиц – молекул. Молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления, движении. Его интенсивность зависит от температуры вещества. Молекулы различных веществ по-разному взаимодействуют между собой. Взаимодействие это существенно зависит от типа молекул и от расстояния между ними.

Молекулярно-кинетическая теория ставит себе целью использовать те свойства тел, которые непосредственно наблюдаются на опыте (давление, температуру и тому подобное) как суммарный результат действия молекул. При этом она пользуется статистическими методами, интересуясь не движением отдельных молекул, а лишь такими средними величинами, которые характеризуют движение огромной совокупности частиц. Отсюда другое ее название – статистическая физика. Статистическая физика позволила теоретически вывести многие известные количественные закономерности и связать друг с другом разнородные на первый взгляд физические явления.

Изучением различных свойств тел и изменений состояний вещества занимается также термодинамика. Термодинамика изучает макроскопические свойства тел и явлений природы, не интересуясь их микроскопической картиной. Величины: температура (Т), объем (V), давление (р) – являются параметрами, характеризующими макроскопическое состояние всего тела.

В основе термодинамики лежит несколько фундаментальных законов. Называются они началами термодинамики. Законы эти установлены на основе обобщения большой совокупности опытных факторов. В силу этого, выводы термодинамики имеют весьма общий характер.

Термодинамика и молекулярно-кинетическая теория взаимно дополняют друг друга, образуя по существу единое целое.

Равновесным состоянием системы называется такое состояние системы, при котором все параметры системы имеют определенные значения, остающиеся при неизменных внешних условиях постоянными сколь угодно долго. Не всегда какой-либо параметр имеет определенное значение. Если, например, температура в разных точках тела неодинакова, то телу нельзя приписать определенное значение параметра Т. В этом случае состояние называется неравновесным.

Если такое тело изолировать от других тел и предоставить самому себе, то температура выравнивается и принимает одинаковое для всех точек значение Т. Тело переходит в равновесное состояние. Процесс перехода системы из неравновесного состояния в равновесное называется процессом релаксации.

Если по координатным осям откладывать значения каких-либо двух параметров, то любое равновесное состояние системы может быть изображено точкой. Всякий процесс, т.е. переход системы из одного состояния в другое связан с нарушением равновесия системы. Следовательно, при протекании процесса в системе она проходит через последовательность неравновесных состояний. Однако, если процесс перехода системы из одного состояния в другое производить бесконечно медленно, то процесс будет состоять из последовательности равновесных состояний.

Процесс, состоящий из непрерывной последовательности равновесных состояний, называется равновесным или квазистатическим. Равновесный процесс может быть изображен на координатной плоскости соответствующей кривой. Равновесные процессы обратимы. Реальные процессы при достаточно медленном протекании могут приближаться к равновесному сколь угодно близко.

Соседние файлы в папке для первого курса