- •Введение
- •Физические основы механики
- •1. Кинематика поступательного и вращательного движения
- •1.1. Система отсчета. Путь. Вектор перемещения
- •1.2. Скорость. Ускорение при криволинейном движении
- •1.3. Нормальное, тангенциальное и полное ускорения
- •1.4. Движение точки по окружности. Угловая скорость. Угловое ускорение
- •2. Динамика поступательного движения
- •2.1. Законы Ньютона
- •2.2. Силы в механике
- •2.2.1. Сила тяжести
- •2.2.2. Упругие силы
- •2.2.3. Сила трения
- •2.3. Внешние и внутренние силы. Закон сохранения импульса
- •3. Работа и энергия
- •3.2. Кинетическая энергия механической системы и её связь с работой
- •3.3. Потенциальная энергия материальной точки во внешнем силовом поле и ее связь с силой, действующей на материальную точку
- •3.4. Потенциальная энергия системы взаимодействия. Связь кинетической энергии системы с работой внутренних и внешних сил
- •3.5. Закон сохранения механической энергии. Закон сохранения и превращения энергии как проявление неуничтожимости материи и ее движения
- •3.6. Удар абсолютно упругих и неупругих тел
- •4. Динамика вращательного движения
- •4.1. Момент силы и момент импульса
- •4.2. Уравнение моментов
- •4.3. Движение центра тяжести твердого тела
- •4.4. Момент инерции тела относительно оси вращения
- •4.5. Уравнение динамики вращательного движения твердого тела относительно неподвижной оси. Закон сохранения момента импульса
- •4.6. Кинетическая энергия твердого тела. Работа внешних сил при вращении твердого тела
- •4.7. Кинетическая энергия при плоском движении твердого тела
- •5. Элементы специальной теории относительности
- •5.1. Преобразования Галилея. Механический принцип относительности
- •5.2. Постулаты специальной теории относительности. Преобразования Лоренца
- •5.3. Следствия из преобразований Лоренца
- •5.3.1. Одновременность событий в разных системах отсчета
- •5.3.2. Длина тел в разных системах отсчета
- •5.3.3. Длительность событий в разных системах отсчета
- •5.4. Пространственно-временной интервал
- •5.5. Релятивистская кинематика. Релятивистский закон сложения скоростей
- •5.6. Релятивистская динамика
- •6. Механические колебания и волны
- •6.1. Понятия о колебательных процессах. Гармонические колебания. Амплитуда. Частота. Фаза колебаний
- •6.2. Свободные гармонические колебания
- •6.2.1. Математический маятник
- •6.2.2. Пружинный маятник
- •6.2.3. Физический маятник
- •6.2.4. Скорость и ускорение точки, колеблющейся по гармоническому закону
- •6.2.5. Энергия гармонических колебаний
- •6.3. Сложение колебаний
- •6.3.1. Сложение колебаний одного направления и одинаковой частоты
- •6.3.2. Сложение двух гармонических колебаний одного направления, но разного периода
- •6.3.3. Сложение взаимно перпендикулярных колебаний
- •6.4. Затухающие колебания
- •6.5. Вынужденные колебания. Резонанс
- •6.6. Волновые процессы
- •6.6.1. Плоская синусоидальная волна. Фазовая скорость. Длина волны. Групповая скорость
- •6.6.2. Скорость распространения волн в упругой среде
- •6.6.3. Поток энергии в волновых процессах
- •6.6.4. Принцип Гюйгенса-Френеля. Интерференция волн
- •6.6.5. Отражение волн. Стоячие волны
- •7. Молекулярно-кинетическая теория
- •7.1. Статистический метод исследования. Термодинамический метод исследования. Термодинамические параметры. Равновесное состояние и процессы их изображения на термодинамических диаграммах
- •7.2. Основное уравнение молекулярно-кинетической теории газов
- •7.3. Средняя кинетическая энергия молекул. Молекулярно-кинетическое толкование абсолютной температуры. Связь основного уравнения мкт с уравнением Менделеева-Клайперона
- •7.4. Средняя скорость молекул. Поток молекул
- •7.5. Распределение молекул по скоростям. Закон Максвелла
- •7.6. Барометрическая формула.
- •7.7. Больцмановское распределение частиц в потенциальном поле. Закон Максвелла-Больцмана
- •7.8. Экспериментальный метод определения числа Авогадро
- •7.9. Эффективный диаметр молекулы. Число столкновений и средняя длина свободного пробега молекулы
- •7.10. Явления переноса в газах
- •7.10.1. Вязкость газов (внутреннее трение)
- •7.10.2. Закон Стокса
- •7.10.3. Теплопроводность газов
- •7.10.4. Диффузия газов
- •8. Термодинамика
- •8.1. Внутренняя энергия системы. Работа. Количество теплоты. Первое начало термодинамики
- •8.2. Степени свободы молекул. Распределение энергии по степеням свободы
- •8.3. Молекулярно-кинетическая теория теплоемкости газа
- •8.4.1. Изохорный процесс
- •8.4.2. Изотермический процесс
- •8.4.3. Изобарный процесс
- •8.5. Адиабатический процесс
- •8.7. Цикл Карно
- •8.8. Принцип действия тепловой и холодильной машин
- •8.9. Второе начало термодинамики
- •8.10. Приведенное количество тепла. Неравенство Клаузиуса
- •8.12. Статистический смысл второго начала термодинамики. Связь энтропии с термодинамической вероятностью
- •9. Агрегатные состояния и фазовый переход
- •9.1. Реальные газы. Уравнение Ван-дер-Ваальса
- •9.2. Экспериментальные изотермы. Критические состояния
- •9.3. Внутренняя энергия реального газа. Эффект
- •Библиографический список
- •Оглавление
6.2.2. Пружинный маятник
Другим примером гармонического колебания является пружинный маятник.
Пружинным маятником называется система, состоящая из шарика массы m, подвешенного на пружине (рис.6.2).
Обозначим смещение пружины из положения равновесия x. Тогда сила, возникающая в пружине при выведении шарика из положения равновесия, будет равна
F= -kx.
x
Рис.6.2
|
Эта сила пропорциональна величине смещения и направлена к положению равновесия. В таком случае уравнение движения шарика, согласно второму закону Ньютона, запишется в виде или . |
Обозначив , перепишем уравнение движения пружинного маятника:
. (6.6)
Из вида уравнения (6.6) следует, что движение пружинного маятника описывается линейным однородным дифференциальным уравнением второго порядка.
Решение этого уравнения имеет вид
x(t) =Asin(t+)
или x(t) = A cos (t+),
где - частота гармонических колебаний.
Тогда - период колебаний пружинного маятника.
Таким образом, период собственных колебаний пружинного маятника прямо пропорционален корню квадратному из отношения массы груза к коэффициенту жесткости пружины.
Анализируя движение математического и пружинного маятников, можно видеть, что гармонические колебания вызываются силами, обладающими двумя важными свойствами:
- величина силы прямо пропорциональна смещению шарика от положения равновесия;
- направление силы противоположно направлению смещения.
Этими свойствами обладает упругая сила и ряд других сил, которые по своей природе не являются упругими. Они называются квазиупругими силами. Отсюда можно дать следующее определение гармонических колебаний.
Колебания, происходящие под действием упругой или квазиупругой силы называются гармоническими.
6.2.3. Физический маятник
Твердое тело, способное совершать колебания вокруг неподвижной точки, не совпадающей с его центром инерции называется физическим маятником (рис.6.3).
Покажем, что и физический маятник будет совершать гармо-нические колебания.
В положении равновесия центр инерции маятника (С) находится под точкой подвеса (О) на одной с ней вертикали.
При отклонении маятника от положения равновесия на угол возникает вращательный момент, стремящийся вернуть маятник в положение равновесия. Этот момент равен произведению силы тяжести на плечо силы (d):
M=mgd
или , (6.7)
O d
C C
mg
Рис.6.3
|
где расстояние между центром инерции и точкой подвеса. Согласно основному уравне-нию динамики вращательного движения вращательный момент равен M=I или . (6.8) |
В случае малых колебаний sinи, приравнивая (6.7) и (6.8), получим уравнение колебаний физического маятника:
или . (6.9)
Обозначим
и перепишем уравнение (6.9) в виде
. (6.10)
Уравнение колебаний физического маятника представляет собой однородное линейное дифференциальное уравнение второго порядка.
Из теории дифференциальных уравнений известно, что решением уравнения (6.10) будет функция вида
(t) =0cos(t+),
т.е. при малых отклонениях от положения равновесия физический маятник совершает гармонические колебания, частота и период которых определяются из следующих соотношений:
;
.
Сопоставляя эту формулу с периодом колебаний математического маятника
,
можно видеть, что математический маятник длиной будет иметь такой же период колебаний, как и данный физический маятник.
Величину называют приведенной длиной физического маятника.
Таким образом, приведенная длина физического маятника – это длина такого математического маятника, период колебаний которого совпадает с периодом данного физического маятника.
Введя понятие приведенной длины физического маятника, выраженное для периода колебаний можно записать в виде
.