
- •Г.И. Скоморохов
- •Введение
- •Основные физические свойства жидкостей
- •1.1. Определение жидкости
- •1.2. Классификация сил, действующих в жидкости
- •1.3. Основные физические свойства жидкостей
- •Гидростатика
- •2.1. Основные понятия гидростатики
- •2.1.2. Давление абсолютное, избыточное, вакуум
- •2.1.3. Свойства гидростатического давления
- •2.1.4. Основное уравнение гидростатики. Закон Паскаля
- •2.1.5. Поверхности уровня
- •2.2. Дифференциальные уравнения гидростатики
- •2.2.2. Основное дифференциальное уравнение гидростатики
- •2.2.3. Дифференциальное уравнение поверхности
- •2.3. Основные задачи гидростатики
- •2.4. Основное уравнение гидростатики из уравнений Эйлера. Закон распределения давления
- •2.4.1. Геометрическая интерпретация основного уравнения гидростатики
- •2.4.2. Энергетическая интерпретация основного уравнения гидростатики
- •2.5. Применение закона Паскаля в технике
- •2.5.1. Приборы для измерения давления
- •2.5.2. Простейшие гидравлические машины.
- •2.5.1. Приборы для измерения давления
- •2.5.2. Простейшие гидравлические машины. Гидравлический пресс. Мультипликатор
- •2.6. Сила давления на плоскую стенку. Гидравлический парадокс
- •2.7. Центр давления
- •2.8. Сила давления жидкости на криволинейные стенки
- •2.9. Закон Архимеда
- •2.10. Относительное равновесие жидкости
- •2.10.1. Движение сосуда с жидкостью прямолинейно в произвольном направлении с постоянным ускорением
- •2.10.2. Движение сосуда с жидкостью вертикально вниз с постоянным ускорением
- •2.10.3. Равномерное вращение цилиндрического сосуда с жидкостью вокруг вертикальной оси
- •2.10.4. Равновесие жидкости в поле центробежных сил при нулевой или слабой гравитация
- •2.11. Формы поверхностей раздела между жидкостью и газом (паром) в условиях динамической невесомости
- •3. Гидродинамика
- •3.2. Виды движения жидкости
- •3.3. Линия тока и траектория частицы, элементарная струйка
- •3.4. Закон сохранения массы. Расход. Уравнение неразрывности
- •3.5. Живое сечение. Смоченный периметр. Гидравлический радиус
- •3.6. Уравнение количества движения для потока жидкости
- •3.7. Дифференциальные уравнения движения идеальной жидкости в форме уравнений Эйлера
- •3.8. Основное дифференциальное уравнение установившегося движения идеальной жидкости
- •3.9. Уравнение Бернулли для струйки идеальной несжимаемой жидкости
- •3.9.1. Геометрический смысл уравнения Бернулли.
- •3.9.2. Энергетический смысл уравнения Бернулли
- •3.9.1. Геометрический смысл уравнения Бернулли. Трубка Пито
- •3.9.2. Энергетический смысл уравнения Бернулли
- •3.10. Уравнение Бернулли для элементарной струйки вязкой жидкости
- •3.11. Уравнение Бернулли для потока вязкой несжимаемой жидкости
- •3.12. Классификация гидравлических потерь. Гидравлический и пьезометрический уклоны
- •3.13. Применение уравнения Бернулли в технике
- •3.14. Основы гидродинамического подобия
- •3.15. Режимы течения жидкости
- •3.16. Критерий Рейнольдса и гидравлический радиус
- •4. Ламинарное течение жидкости
- •4.2. Расход при ламинарном режиме в круглой трубе. Формула Пуазейля. Коэффициент Кориолиса
- •4.3. Потери на трение. Формула Дарси-Вейсбаха
- •4.4. Влияние теплообмена на профиль скоростей и потери по длине
- •4.5. Начальный участок ламинарного потока
- •4.6. Потери на трение при ламинарном течении в каналах некруглой формы
- •4.7. Ламинарное течение в зазорах
- •4.7.1. Течение через зазор между параллельными стенками под действием умеренного перепада давлений
- •4.7.2. Течение через зазор при больших перепадах давления
- •5. Турбулентное движение жидкости
- •5.1. Пульсация местной скорости в турбулентном потоке
- •5.2. Распределение осреднённых местных скоростей в турбулентном потоке
- •5.3. Гидравлически гладкие и шероховатые трубы
- •5.4. Потери по длине в гидравлически гладких трубах
- •5.6. Влияние шероховатости на потери. График Никурадзе
- •Заключение
- •Библиографический список
- •Оглавление
4.2. Расход при ламинарном режиме в круглой трубе. Формула Пуазейля. Коэффициент Кориолиса
При выводе теоретической формулы для определения расхода жидкости воспользуемся полученным законом распределения скоростей по сечению (закон Стокса).
Выдели
в потоке элементарное сечение в виде
кольца, радиус которого -
,
ширина -
,
а площадь -
(рис. 4.2).
Рис. 4.2. К выводу формулы Пуазейля
Определим расход жидкости через это бесконечно малое сечение
.
Интегрируя, получаем объёмный расход через всё живое сечение потока:
;
Расход
жидкости через живое сечение потока
можно выразить и через диаметр
трубы, тогда получим
-
формула Пуазейля. (4.8)
Этот закон впервые был сформулирован Г. Хагеном в 1839 году и вскоре повторно выведен французским врачом Жаном Пуазейлем (1799-1869) в 1840 году. Согласно закону, секундный объёмный расход жидкости пропорционален перепаду давления на единицу длины трубки и четвёртой степени диаметра трубы. Эта зависимость была получена чисто эмпирическим путём при исследовании движения жидкости в тонких капиллярных трубках.
Среднюю скорость по сечению найдём делением расхода на площадь живого сечения потока
. (4.9)
Сравнив выражение для средней скорости (4.9) с выражением для максимальной скорости (4.6) получим, что
.
т.е. при ламинарном режиме течения средняя скорость в два раза меньше максимальной.
Определим
коэффициент неравномерности расхода
как отношение кинетической энергии,
вычисленной по местным скоростям, к
энергии, вычисленной по средней скорости
потока
.
После интегрирования, подстановки пределов и сокращения получим значение коэффициента Кориолиса для ламинарного течения жидкости в круглой трубе
.
Таким образом, кинетическая энергия ламинарного потока в 2 раза больше кинетической энергии, рассчитанной по средней скорости.
4.3. Потери на трение. Формула Дарси-Вейсбаха
Определим потери напора на трение при ламинарном течении жидкости в круглой трубе. Применим к двум сечениям 1-1 и 2-2 (рис.4.3) уравнение Бернулли:
.
Для нашего случая
-
т.к. труба горизонтальная;
-
сечение потока постоянно;
-
течение ламинарное.
В результате уравнение Бернулли упростится:
.
Откуда .
(4.10)
Из
формулы Пуазейля (4.20)
выразим
и подставим в (4.10 22)
; (4.11)
Учитывая,
что
и
,
получим окончательно
. (4.12)
Выразив
в формуле (4.12 24) расход через среднюю
скорость
,
получим
. (4.13)
Таким образом, при ламинарном течении потери на трение линейно зависят от расхода или средней скорости потока. Характерна для ламинарного режима и прямая зависимость потерь от вязкости.
В такой форме следует учитывать потери по длине в уравнении Бернулли, т.е.
.
Для
того чтобы формулу Пуазейля структурно
привести к форме Дарси-Вейсбаха,
достаточно умножить и разделить правую
часть формулы (4.13) на
.
Подставляя
,
получаем
. (4.14)
Сравнивая (4.14) и формулу Дарси-Вейсбаха (3.28), приходим к выводу, что при ламинарном течении в круглой цилиндрической трубе
.
(4.15)
Графически эта зависимость представлена на рис. 4.3.
Рис.
4.3. Зависимость
-
опытные точки лежат
выше теоретической кривой