Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Biodiversity2013

.pdf
Скачиваний:
25
Добавлен:
20.05.2015
Размер:
4.74 Mб
Скачать

«Biodiversity. Ecology. Adaptation. Evolution.» Odessa, 2013

2-3 шт/м2),Anacamptis morio (L.)R.M.Bateman, PridgeonetM.W.Chase(зростає на площі близько 200м2 на верхній частині схилу південно-західної експозиції; щільність генеративних особин – 3-4 шт/м2), Adonis vernalis L. (виявлено лише 3 генеративні особини), Pulsatilla patens (L.) Mill. s.l. (зростають на площі близько 3 га, й характеризуються високою щільністю генеративних особин –

25-30 шт/м2).

Виявлене нове місцезростання раритетних видів доповнює відомості про їх поширення, а висока щільність особин дає підстави розглядати дану територію як перспективну для заповідання.

Гербарні зразки передані до Гербарію Чернівецького національного університету (CHER).

New finds of rare species of Prut-Dniester interfluve

Shparyk M, Budzhak V.

On the territory of Tracts “Sinozhaty” (outskirts of Staryi Gvozdets, Kolomiysky district, Ivano-Frankivsk region) found 5 rare species: Colchicum autumnale L.,

Frittilaria meleagris L., Anacamptis morio (L.) RM Bateman, Pridgeon et M.W. Chase, Adonis vernalis L., Pulsatilla patens (L.) Mill. s.l.

ВЛИЯНИЕ ПОЧВЕННО-КЛИМАТИЧЕСКИХ ФАКТОРОВ НА МОРФОЛОГИЧЕСКИЕ И ФИЗИОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ

SEPTORIA NODORUM

Яруллина Л. М., Умаров И.А.

ФГБОУ ВПО «Башкирский государственный университет», Уфа, Россия

E-mail: Lilechek89_89@mail.ru

Септориоз – распространенная и опасная болезнь пшеницы на территории Южного Урала. Грибы рода Septoria, вызывающие эту болезнь, относятся к классу Deuteromycetes, порядок Sphaeropsidales. В благоприятных условиях с теплым влажным климатом, и периодически выпадающими осадками за вегетационный период может развиваться до 6-12 генераций патогена. Широкая распространенность патогена, а так же высокая избирательность паразитированиянапшеницепредполагает,многообразиеегоформ,чтосвязано с различной степенью синтеза факторов вирулентности. Соответственно, определенныеразличияуэтихпатогеновдолжныпроявлятьсяивкультуральноморфологических показателях.

Для оценки образцов S. nodorum в условиях лаборатории отрезки первых полностьюразвернувшихсялистьевпроростковпшеницы(7-10сутпослепосева) помещали на среду с бензимидазолом (40 мг/л). Инфицирование проводили путем нанесения микропипеткой суспензии спор гриба в концентрации 106 спор/мл одной микрокаплей объемом 3 мкл на лист. Инокулированные листья выдерживалипри комнатныхусловияхв темноте втечение24 часов, послечего переносили на светоплощадку с фотопериодом 16 ч/сут.

60

Phytobiota and mycobiota of aquatic and terrestrial ecosystems

НаблюдениезаростомнаэпидермиселистьевгрибаS.nodorum,выделенного из популяции южной Лесостепи, показало, что признаки развития септориоза в контрольных листьях проявлялись уже через 24 ч после инфицирования в виде слабого обесцвечивания листьев с последующим их побурением, а через 72 ч после инокуляции симптомы септориоза проявлялись в виде крупных бурых пятен. Кроме этого штаммы характеризовались более коротким латентным периодом, пикниды со спорами формировались уже к 7-м сут опыта.

На листьях растений, инфицированных штаммами гриба из популяции Зауральскойстепнойзоны,симптомыболезнибыливыраженыслабее,пикниды со спорами формировались к 14-м сут опыта, что свидетельствует о низкой агрессивности гриба в данной популяции.

Таким образом, нами выявлены морфо-физиологические различия между изолятами S. nodorum, собранными из агробиоценозов, отличающимися почвенно-климатическими условиями, в том числе, по степени агрессивности штаммов гриба.

Работа проведена при финансовой поддержке гранта РФФИ_поволжье_а №

11-04-97037.

Theinfluenceofsoilandclimaticfactorsonthemorphologicalandphysiological characteristics of the Septoria nodorum

Yarullina L.M., Umarov I.A.

The of fungal pathogen Septoria nodorum in pure culture were isolated and their morphological and physiological parameters were characterized. Researches showed that strains of a mushroom of their southern Forest - steppe differed high aggression in comparison with S. nodorum isolates from population of theTrans-Ural steppe zone.

PASTORAL DEGRADATION OF GRASSLAND PHYTOCOENOSES IN

SOUTHWEST OF UKRAINE

Buzhdygan O.Y.

Chernivtsi National University, Chernivtsi, Ukraine

E-mail: oksana.buzh@gmail.com

The 78% of Ukraine’s agricultural lands are arable, which is the highest level of land plowing in a Europe (Sutton, 2008). This is a result of the large industrial farms shifting away from cattle toward crop production, as cattle livestock is not quickly profitable and not as attractive to investors as the other types of farming. Because of reduce in cattle’inventories the demand for forage is continuing to shrink, which is followed by the transferring of the natural pastoral grasslands to the plowed lands in order to supply the crop production. Ukraine’s agricultural sector is estimated to cause 35-40 percent of all environmental degradation (USDA: Ukraine, 2004).

The goal of current research is to assess the level of pastoral degradation of grasslandplantcommunitiesinsouthwestofUkraine.Toachievethegoalwecompare plant communities of the 31 pastoral grasslands, located in Chernivtsi Region in

61

«Biodiversity. Ecology. Adaptation. Evolution.» Odessa, 2013

Ukraine (47°43' 48°41’ N × 24°55’ – 27°30’ E). In order to define the level of pastoral degradation of the study phytocoenoses we assess the fraction (%) of the forage plant species (susceptible for cattle grazing) within the each of the study plots using the handbook of grazing-susceptible plant species of Europe by Medvedev (1981). Plant samples were gathered during peak growing seasons (June – July) in years 2005, 2006, and 2007 and were identified to species. Study plots for each of the compared pastures were 10m × 10m. All of the study grasslands, unmanaged since 1992, are used as commons for cattle pasturing by private household farms, which typically have two to three head of cattle per farm.

The species list of grazingsusceptible plants found within the study area is presented in on-line data supplement of Buzhdygan et. al. (2012).

Our results show that the ratio of the grazing-susceptible plant species vary (CV=18%) between a low of 35% and a high of 71% throughout the study phytocoenoses (n=31).

While moving in direction from mountain (Carpathian Mountains) to plain area the fraction of the forage plants decrease within the study pastures, that can be driven by anthropogenic (agricultural) influence increase in the direction from plane zone to mountains of the study area.

In average within the study area the forage plants reach 54% (SD(+)=9.6) of the total plant species richness of the study phytocoenoses. Consequently, almost half of the plant species within the study pastoral grasslands are inedible for cattle (grazingtolerant).

PHYTOTROPHIC PARASITIC MICROMYCETES OF NATURAL

BOUNDARY TASH–JARGAN (CRIMEA, UKRAINE)

Gorkovenko A., Prosiannykova I.

National Taurida V.I. Vernadsky University, Simferopol, Ukraine

E-mail: aphanisomenon@mail.ru

To anticipate the epiphytotic spread of parasitic micromycetes the stocktaking of their species’composition is required. They are an integral part of the biocenoses performinganimportantregulatoryfunction.ThePredgorniyzoneofCrimearemains poorly investigated in mycological respect. Although the region has no large nature reserve objects, it appears to be of a considerable interest in terms of mycological research, due to the unification of the steppe and forest vegetation. One of these objectsisanaturalboundaryTash-Jargan(546mabovethesealevel,inthevicinityof Chistenkaya village, Simferopol district, Crimea). The natural boundary Tash-Jargan is an isolated natural complex with typical for Predgorniy Crimea vegetation, with original weathering shapes and discovered historical monuments and is of interest for the developing nature reserves’studies as a nature monument of local importance (Jena, 2004). Mycological studies of phytotrophic parasitic mycobiota have not been conducted in this region before.

The aim of our research is to study the species’diversity of phytotrophic parasitic micromycetes of natural boundary Tash-Jargan. The collection of herbarium

62

Phytobiota and mycobiota of aquatic and terrestrial ecosystems

specimens of parasitic fungi of the plants was accomplished during the growing season of 2012 using the detail-routing method in the vegetative communities of the natural boundary. The collected material was processed according to the standard method (Chumakov, 1974).As the result of the carried out mycological research we found 23 species of 12 genera of parasitic fungi belonging to three divisions. The dominant by the number of species is the division Basidiomycota - 13 species and 5 genera (57% vs 42%), followed by the divisionAscomycota - 9 species and 6 genera (39%vs50%),whileinthirdplaceisthedivisionOomycota(1species).Thespecies’ composition of phytotrophic parasitic micromycetes of the natural boundary is given in the following list:

Division Oomycota, genera Peronosporales: Albugo amaranthi (Schwein) Kuntze. Division Ascomycota, genera Erysiphales: Erysiphe aquilegiae DC., E. berberidis (DC.) Lev., E. pisi DC., E. trifolii Grev., Golovinomyces cichoracearum

(DC.) Heluta, Phyllactinia guttata (Wallr.) Lév.

Genera Dothideales: Alternaria tenuis Ness, Ascochyta clematidina Gloyer., Septoria cornicola Desm.

Division Basidiomycota, genera Uredinales: Melampsora populnea (Pers.) P. Karst., Puccinia calcitrapae DC., P. cesatii J. Schröt., P. falcariae (Pers.) Fuckel, P. graminis Pers., P. lapsanae Fuckel, P. persistens Plowr., P. vincae (DC.) Berk., P. violae (Schumach.) DC., Triphragmium filipendulae Pass., Uromyces geranii (DC.) Lév., U. striatus J. Schröt.

Genera Ustilaginales: Shizonella melanоgramma (DC) Schroet.

DISTRIBUTION PATTERN OF ENDANGERED SPECIES OF THE GENUS

CRAMBE L. IN ROSTOV REGION (SOUTH RUSSIA)

Kalaschnik S.A., Fedyaeva V.V.

Southern Federal University, Rostov-on-Don, Russia

E-mail: svetlyachok2014@yandex.ru, vfedyaeva@gmail.com

The wild flora of Rostov region include six species belonging to genus Crambe L. (Brassicaceae): C. aspera Bieb., C. koktebelica (Junge) N. Busch, C. maritima L., C. steveniana Rupr., C. tataria Sebeok (Dorofeev, 2007) and C. pinnatifida R. Br. (Fedyaeva & al., 2012). All of them listed in the Red Data Book of Rostov region. With the exception of critically endangered (perhaps so extinct) C. koktebelica and vulnerable C. tataria and C. maritima, three species (C. aspera, C. steveniana, C. pinnatifida) in accordance with IUCN Red List Categories and Criteria: Version 3.1 classify as endangered species. C. aspera and C. pinnatifida are endemics of the Pontian province of the Eurasian steppe phytogeographical region; as endemic of CrimeaandCiscaucasiaC.stevenianahasnarrowerarea.Thesespeciesareindicators of the virgin steppe, whose area in the Don Basin sharply decreased right from the beginning of XX century. The data about their distribution, obtained from herbaria (RV, RWBG) clearly show tendency towards reduction of areas while the results of field studies – towards gradual reduction in the number of populations. Now the

63

«Biodiversity. Ecology. Adaptation. Evolution.» Odessa, 2013

number of populations of all species in question is always low (from 5–10 to 150 generative individuals). Distribution of these species in Rostov region is similar. AmongthemonlyC. steveniana wasfoundin2localitiesontheNorthAzovplain,all the others (8) are located towards south from the Lower Don’s valley on the EyskoEgorlyzkaya plain and on the Sal-Manych watershed. Most of the known localities of C. aspera (6) also are located on the Eysko-Egorlykskaya plain, but the others two extended on the west slope of Ergeny upland. Now it is known only 2 localities of C. pinnatifida (Vasilevskaya gully on starboard of Manych’s valley and Kara-Sal’s valley on the west slope of Ergeny upland). Let us note, that its distribution studied to the present time insufficiently.

The majority of localities of endangered species of genus Crambe are dated by first half XX centuries. Part of them is destroyed because of the ploughing of the steppes belonged to horse-breeding farms.As a whole, is required the revision of the contemporary distribution these species in Rostov region.

EVALUATION OF THE STAND OF SPRUCE TYPES CENOSES NATIONAL NATURAL PARK «HUZULSCHYNA» TERRITORY KOSOVO AREA

Legeta Y.V.

Chernivtsi National University named after Yuriy Fedkovych, Chernivtsi, Ukraine

E-mail: yulianalegeta@ukr.net

Conservation business - one of the most important components of environmental science and environmentalmanagement. Significant number of environmentalfunds, including the National Park “Hutsulshchyna” located within the urban areas, because of what is experiencing significant human impact. Forest formations as geologically oldest and most vegetation type plays priority ecological role in the evolution of the biosphere and maintaining its natural state.

The aim of this study was to conduct a comprehensive analysis of the monitoring observations of the different ages of the indigenous stand of spruce cenoses natural origin of the National Natural Park (GMP) “Huzulschyna.”

Model of the experiment was based on the selection of the type of spruce stands Kosmatskih forest state enterprise “Kut forestry.”The studies were conducted during 2011-2012. Test site is located in the protected tract “Greg”, whose territory is included in the NPP“Huzulschyna.”

Projective cover of grasses and mosses of the area is 95% and is represented by 29 species of grasses and three species of moss. Species composition and density of coverage of the overwhelming majority represented by the following species: blackberry hairy (Luzula pilosa (L.) Willd.)) Of 15%, Blackberry Forest (Luzula sylvatica (Huds). Gaudin) - 15%, defenders of Chartres (Dryopteris cartusiana (Vill

.) HP Fuchs) - 20%, defenders lantsetnogrebnyasty (Dryopteris lanceolata-cristata (Vill.) HP Fuchs) - 20%, Alpine pidbilik (Homogyna alpina (L.) Cass.) - 15%, shamrock (Oxalis acetosella (L.)) - 25%.

64

Phytobiota and mycobiota of aquatic and terrestrial ecosystems

Stands in the study area is located in the upper part of the slope at an altitude of 1334-1360 meters above sea level, is the boundary of alpine and subalpine zones. Photo stand the test area is 685.5 m ³ / ha, to the first floor has 640.5 m ³ / ha, the second 42.5 and the third - 2.5m ³ / ha. The average diameter of the stand is 36.8 inches and the average height of 28.9. The number of trees is 491 pcs. / Ha, and the cross sectional area - 51.3 m2/ha. The vertical spatial structure of tiered stands.

Stabilizing factor this natural mountain forest is also sufficient and living condition of natural recovery, which is able to form a radical stand.

MICRASTERIAS FOLIACEAE BAILEY EX RALFS IN AFRICA:

DISTRIBUTION AND NEW RECORDS

FROM THE REPUBLIC OF SOUTH AFRICA AND MOZAMBIQUE

Levanets A.1*, de Klerk L.P.2, Barnard S.1, Oberholster P.J.2,3, van Rensburg L.1

1North-West University, Potchefstroom, Republic of South Africa 2CSIR, Pretoria, Republic of South Africa

3University of Pretoria, Republic of South Africa

E-mail: 20868421@nwu.ac.za

Genus Micrasterias C. Agardh ex Ralfs (Desmidiales, Zygnematophyceae) counts 56 species worldwide (which are currently accepted taxonomically) and more than 900 species and intraspecific names (AlgaeBase 2013). One of the most unusual membersofthisgenus-M. foliaceae BaileyexRalfs-istheonlyfilamentousspecies so far. It was described by Prof. J.W. Bailey in 1847, in a letter to John Ralfs, and was published and figured by the latter in his British Desmidieae (Ralfs 1848, Brit. Desm.: 210, tab.35, fig.3).

It is recorded in Asia (Thailand, Vietnam, Cambodia, Burma, Bangladesh, Sri Lanka, India, Nepal, China, Singapore, Malaysia, Indonesia, Papua New Guinea, Japan, Russia (river Amur basin)), North America (Canada, USA), South America (Brazil, Venezuela)Australia andAfrica as well.

At the moment on African continent records of this species are known from 14 countries mostly from the tropical Central Africa, Madagascar and also from SouthernAfrica: Mali (Couté, Rousselin 1975), Côte d’Ivoire (Konan and al. 2012), Benin (Lalèyè and al. 2006), Sierra Leone (Woodhead, Tweed 1958; Gerrath, Denny 1989; Alfinito 2011), Nigeria (Compère 1977; Kadiri, Opute 1989; Opute 1992; Kadiri 2002), DRC (van Oye 1953), Chad (Compère 1967), Sudan (Bourrelly 1957; Woodhead, Tweed 1960), Zambia (Thomasson 1960, 1965, 1966), Zimbabwe (Thomasson1965),Botswana(Cronbergandal.1995),Madagascar(Bourrelly,Couté 1991) and Republic of South Africa (Claassen 1982, unpublished data). Dr. Martha Isabella Claassen in her dissertation thesis (1982, vol.1, p.449; vol.2. Fig.195: 8) indicated this species but unfortunately she did not publish this record later.

Wecollected,found,describedanddocumentedthisamazingandunusualspecies from two new locations within Southern Africa: Waterberg Mountains of South Africa (Limpopo Province, Mokolo River) and from Northern Mozambique (TransZambézia, Cabo Delgado, Palma environs, close to Tanzanian border).

65

«Biodiversity. Ecology. Adaptation. Evolution.» Odessa, 2013

AlsoafewvarietiesofthisspeciesweredescribedandrecordedinAsia,America, Australia and some of them inAfrica (mostly tropical), i.e.:

-var. elongata Turn., known from India, Sierra Leone.

-var. granulifera Cushman, known from USA.

-var. multiornata Y. Zalocar, known fromArgentina.

-var. ornata Nordst., known from Mali, Nigeria, Sahel-Sudan region, Kingdom

ofSwaziland,Malaysia,Indonesia,PapuaNewGuinea,Madagascar,USA,Australia. - var. quadrinflata Scott et Prescott, known from Indonesia and Thailand.

ECOLOGICAL AND CENOTICAL CHARACTERISTIC ASSOCIATION GLYCERIETUM MAXIMAE OF SMALL RIVER (BELARUS)

Moiseichik E.V.

Institute of Experimental Botany, Minsk, Belarus

E-mail: e.mojsejchik@gmail.com

Our research aim was to analyze the structure of aquatic plant community Nacha small river basin Pripyat (headwater source at 53°03΄N, 26°24΄E, mouth at 52°52΄N, 26°35΄E);theriveris42km,ofwhich20.8kmchannelized.Geobotanicalstudieswere carriedoutinAugustof2012themethodofsampleplots(n=13,S=400m2).Calculation of ecological regimes phytocenoses conducted byTsyganov (Buzuk, Sozinov, 2009).

We revealed the following syntax according to the dominant species: 1 type, 2 group of classes, 2 classes of formations, 2 groups of formations, 5 formations including 5 associations (Papchenkov, 2003).

To study the ecological structure of the aquatic plant communities we have chosen the plant communities related to the association Glycerietum maximae: they account for 55% of all described coenoses.

Plant communities related to Glycerietum maximae, noted at the canalized and meandered areas of the channel. For all the above community revealed significant variation in the number of species (4-13), and the total percent cover (27,9-100,4%). The most stable number of species in the plot meandered coenoses channel (8-13 species). Channelized area is characterized by a minimum of species (4 species), because 1) cenopopulation Glyceria maxima have a high density and a practical form monospecificcommunities,2)therapiddevelopmentofGlyceria maxima duetolack of competition after cutting, but one with a big plant communities number of species

– 11, which is, in our view, with strongly zoogenic impact on habitat (soil damage when scott grazing) and, as a consequence, high mosaic grass cover.

Ecological parameters are all described coenoses quite similar and slightly fluctuate.Forallcenosescharacteristicslightlyacidicratherrichsoils.Humidification ranges typical of wetlands at low (only in plant communities subject to periodic fluctuations in water level at the site of a transformed channel) and moderate-level variable water regime

Thus, the association of plant communities Glycerietum maximae exhibit considerable variability in species composition and abundance of species in a sufficiently stable ecological regime.

66

Phytobiota and mycobiota of aquatic and terrestrial ecosystems

ON THE MATTER OFDINOPHYTACHANGES IN THE NORTH-

WESTERN BLACK SEA FOR THE LAST 20 YEARS

Molodit O.V., Dereziuk N.V.

Odessa National I.I. Mechnikov University, Odessa, Ukraine

E-mail: omolodit@gmail.com

Dinophyta algae of the Black Sea plankton are the important component of marine ecosystem, they are food for many marine animals and could cause ‘algal blooms’, the so-called ‘red tides’. Most of the species are aututrophs, however we know about heterotrophic nutrition of some of them by osmosis or phagocytosis. It is known that the following factors influence the size of cells and, respectively – total biomass of dinophyta algae: seasonal changes of water temperature and content of dissolved nutrients, as well as age of the cells and the level of provision with food (for phagocytes).

Aim of our work has been study of size of dinophyta algae cells in the period from 1992 to 2012. Our studies cover two periods – the end of the ХХ Century (eutrophication of marine waters) and the past decade, which is characterized by practical absence of eutrophication phenomena on sea shelf.

Methodology of studies and the source planktonic materials collected by Odessa NationalI.I.MechnikovUniversityonthenorth-westernBlackSeashelf(1992–2000) and in the Zmiinyi Island coastal waters (2003–2012) are described.

Changes of cell sizes of 97 mass species belonging to 15 genera семействам:

Gymnodiniaceae, Polykrikaceae, Cladopyxidaceae, Gonyaulacaceae, Ceratiaceae, Goniodomataceae, Heterocaspaceae, Glenodiniaceae, Peridiniaceae, Lessardiaceae, Oxytoxaceae, Dinophysiaceae, Prorocentraceae, Protoperidiniaceae, Warnowiaceae have been analyzed. Diagrams of changes of cell sizes have been presented and discussed;elongationandroundnessfactorsforeachspecieshavebeencalculated.Itis shown that during eutrophication periods for species of genus Ceratiaceae indices of elongation of cells increase, while after 2003–2005 they decrease. Species belonging to genera Prorocentraceae, Glenodiniaceae, Gymnodininiaceae and others during eutrophication were more round, while in the current period the cells became flatter.

The current state of dinophyta compared with the data of the 90th is characterized by development of the cells having more ‘common’ form and size specified in botanical literature for the seas of theAtlantic Ocean.

Authors gratefully acknowledge support from the projects EU’s FP7 Project PERSEUS – “Policy-oriented marine Environmental Research for the Southern EUropean Seas” (Grant Agreement № 287600) and “To assess long-term changes and to substantiate measures to stabilize environmental state of coastal waters and coastline of the Zmiinyi Island” (№ 506), funded by the Ministry of Education and Science of Ukraine.

67

«Biodiversity. Ecology. Adaptation. Evolution.» Odessa, 2013

HIGH-MOUNTAIN RANUNCULUS L. IN UKRAINIAN CARPATHIANS

Novikoff A.V.

State Natural History Museum NAS Ukraine, Lviv, Ukraine

E-mail: novikoffav@gmail.com

Ranunculus L. is the largest genus within family Ranunculaceae Juss. which consists of about 600 species of herbaceous species of a cosmopolitan distribution (Tamura 1995; Hörandl et al. 2005; Hörandl & Emadzade2012).This genus contains the number of agamic species and as a result is very difficult taxonomic group with great diversity of morphological features. In the same time Ranunculus mountain species form independent and unique phylogenetic clade which is rich in endemics (Paun et al. 2008; Hörandl & Emadzade 2011).

There are several contemporary publications dedicated to the taxonomy and distribution of Ranunculus in Carpathian Mountains (Schönswetter et al. 2003; Paun et al. 2005; Paun et al. 2008; Ronikier 2010; Hörandl & Emadzade 2011). Nevertheless these papers deal with the investigations outside Ukrainian part of mountains which belong to Eastern Carpathians.The last taxonomical revision of the genus Ranunculus in Ukrainian Carpathians was conducted in 1977 (Chopyk 1977).

On the base of my preliminary analysis I have suggested that in Ukrainian Carpathians growth about 29 Ranunculus species. From this number 13 species

(R. crenatus Waldst. & Kit., R. platanifolius L., R. thora L., R. cassubicus L., R. fallax (Wimm. et. Grab.) Sloboda, R. auricomus L., R. bulbosus L., R. repens L., R. carpaticus Herbich, R. montanus Willd., R. oreophilus Bieb., R. serpens Schrenk, R. acris L.) could be found in high-mountain habitats.

Clarifications of the taxonomy due to the contemporary data with application of phenetic study as well as the analysis of distribution of the genus Ranunculus in Ukrainian Carpathians are the most important aims for today. The investigations on high-mountainspecieswillbethefirststeponthisway.Thereuponitallowsconducting common biogeografical, comparative phylogenetic and molecular research.

Секція 2. Фауна наземних та водних екосистем

CКЛАДЧАТОКРЫЛЫЕ ОСЫ (HYMENOPTERA, VESPIDAE)

МОНГОЛИИ

Абашеев Р.Ю.1, Батчулуун Б.2

1Бурятский государственный университет, Улан-Удэ, Россия 2Институт биологии, Академия наук Монголии

E-mail: abashrom@yandex.ru; martahgui_11@yahoo.com

В работе приведен видовой состав складчатокрылых ос Монголии составленный на основе материалов собранных в ходе совместных экспедиционных работ в течение двух полевых сезонов в 2011-2012 гг. и

68

Fauna of aquatic and terrestrial ecosystems

коллекционных материалов Института биологии МАН, а также приобщены литературные данные (Курзенко, 1977,1978,1984,1995; Gusenleitner 1991; Giordani Soika 1970). Нами выявлено 92 вида складчатокрылых ос из 24 родов и 4 подсемейств. Из них обитание 7 видов (выделено жирным) впервые указываются на территории Монголии. Информация о распространении 26 видов по территории дополнены новыми сведениями.

Список видов: Allodynerus mandschuricus Bluethgen, Ancistrocerus antilope Panz., Ancistrocerus ichneumonideus kaszabi G.S., Ancistrocerus mongolicus Kost., Ancistrocerus nigricornis Curtis, Ancistrocerus oviventris hibernicus Bluethgen., Ancistrocerus parietum L., Ancistrocerus raddei Kost., Ancistrocerus scoticus Curtis, Ancistrocerus tenellus Kost.,Ancistrocerus trifasciatus Müller, Ancistrocerus hangaicus Kurzenko, Ancistrocerus rufopictus Meade-Waldo., Antepipona

varentzowi F. Mor., Antepipona orbitalis balioni F. Mor., Celonites kozlovi Kost., Discoelius dufourii Lep., Discoelius zonalis Panz., Eremodynerus atrofasciatus F. Mor., Eumenes coarctatus L., Eumenes coelestimontanus Kost., Eumenes coronatus Panz.,Eumenes mediterraneus Kriechbaumer,Eumenes mongolicus F.Mor.,Eumenes pedunculatus Panz., Eumenes septentrionalis G. S., Eumenes jarkandensis Blüthgen, Eumenes tripunctatus Christ., Eumenes papillarius papillarius Christ., Eumenes transbaicalicus Kurzenko., Euodynerus caspicus F. Mor., Euodynerus curictensis Bluethgen, Euodynerus dantici Rossi, Euodynerus rufinus Bluethgen, Euodynerus notatus pubescens Thom., Euodynerus quadrifasciatus F., Eustenancistrocerus askhabadensis Radoszkowski, Gymnomerus laevipes Shuckard, Ischnogasteroides picteti tenius F. Mor., Katamenes tauricus tauricus Sauss., Katamenes radoszkovskii

Bluethgen, Odynerus alpinus Schulthess, Odynerus cuneiformis Kost., Odynerus simillimus F. Mor., Odynerus spinipes L., Onychopterocheilus pallasii Klug,

Onychopterocheilus eckloni F. Mor., Parodontodynerus ephippium laudatus Kost., Pseudepipona augusta F. Mor., Pseudepipona herrichii mongolica G.S.,

Pseudepipona kozhevnikovi Kost., Pseudepipona przewalskyi F. Mor.,

Pseudepipona

herzi kozlovi Kost., Pterocheilus uralensis Kost.,

Pterocheilus dementievi Kost.,

Pterocheilus

napalkovi Kurzenko, Pterocheilus

hebtneri Kost.,

Pterocheilus

kiritshenkoi Kost.,Pterocheilus mandibularis F.Mor.,Pterocheilus phaleratus kaszabi G.S., Pterocheilus quaesitus F. Mor., Pterocheilus sibiricus F. Mor., Pterocheilus turovi Kost., Pterocheilus auriantius Kost., Stenancistrocerus transcaspius Kost.,

Stenodynerus punctifrons Thom. Stenodynerus kaszabi G.S., Stenodynerus nudus F. Mor.,Stenodynerus pullusGusen.,StenodynerusorenburgensisAndre.,Stenodynerus clypeopictus Kost., Symmorphus crassicornis crassicornis Panz., Symmorphus bifasciatus L.,Symmorphus fuscipes H.-Sch.,Symmorphus angustatus Zett.,Polistes chinensis F., Polistes biglumis L., Polistes riparius Sk.Yamane et S.Yamane, Polistes nimpha Christ., Polistes dominulus Christ., Polistes gallicus L., Vespa crabro L., Vespula austriaca Panz., Vespula rufa L., Vespula germanica F., Vespula vulgaris L., Dolichovespula media Retz., Dolichovespula adulterina Buysson, Dolichovespula sylvestris Scop., Dolichovespula norwegica F., Dolichovespula saxonica F., Dolichovespula intermedia Birula.

69

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]