Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физиология Экзамен.doc
Скачиваний:
93
Добавлен:
02.05.2015
Размер:
834.56 Кб
Скачать

9. Газообмен и транспорт кислорода кровью. Роль гемоглобина. Кривая диссоциации оксигемоглобина, влияние на нее различных факторов. Кислородная емкость крови, коэффициент утилизации кислорода.

О2 переносится к тканям в двух формах: связанный с гемоглобином и растворенный в плазме.

В крови содержится лишь незначительное количество О2, растворимого в плазме. Согласно закону Генри, количество газа, растворенного в жид­кости, прямо пропорционально его парциальному давлению и коэффи­циенту растворимости. Растворимость О2 в плазме крови низка: при РО2 = 1 мм рт.ст. в 100 мл крови растворяется 0,0031 мл О2.

Растворенный О2 = РаО2 х 0,0031 мл О2/100 мл крови/мм рт.ст.

При нормальных физиологических условиях (РаО2 = 100 мм рт.ст.) в 100 мл крови растворяется 0,31 мл О2, т.е. 0,31 об.%. Такое количество О2 не обеспечивает потребности организма, поэтому основное значение име­ет другой способ переноса — в виде связи с гемоглобином внутри эритро­цита. Гемоглобин является основным протеином эритроцитов. Главной функцией гемоглобина является транспорт О2 от легких к тканям и транс­порт СО2 от тканей к легким. Каждая молекула гемоглобина человека со­стоит из белка глобина и тема. Основной глобин взрослых — НЬА являет­ся тетрамером, состоящим из двух полипептидных цепей α и двух поли-пептидных цепей β. В спиральную структуру каждой полипептидной цепи глобина встроен гем, который является комплексным соединением двух­валентного иона железа Fе2+ и порфирина. Ион железа тема способен присоединять одну молекулу О2, т.е. одна молекула гемоглобина способна связать 4 молекулы О2- Следует особо подчеркнуть уникальные особенно­сти иона Fе2+ гема обратимо связывать молекулу О2: НЬ + О2 <-> НЬО2, в то время как обычно при реакции изолированного Fе2+ и кислорода обра­зуется Fе3+. Окисленный ион Fе3+ не способен высвобождать O2, т.е. об­разуется необратимая связь, а связь иона Fе2+ гема с О2 происходит за счет конформационных изменений третичной и четвертичной структуры глобина, она обратима, т.е. в тканях происходит высвобождение О2.

Зависимость насыщения гемоглобина О2 от парциального напряжения О2 может быть представлена графически в виде кривой диссоциации окси­гемоглобина. Кривая имеет сигмовидную форму, при этом нижняя часть кривой (РаО2 < 60 мм рт.ст.) имеет крутой наклон, а верхняя часть (РаО2 > 60 мм рт.ст.) относительно пологая. Нижний участок кривой диссоциа­ции оксигемоглобина показывает, что при снижении РаО2 продолжается насыщение гемоглобина кислородом, т.е. ткани продолжают извлекать до­статочное количество О2 из крови. Верхняя пологая часть кривой демонст­рирует относительное постоянство насыщения гемоглобина кислородом, а следовательно, и содержания кислорода в крови независимо от изменений РаО2

Положение кривой диссоциации оксигемоглобина зависит от сродства гемоглобина с кислородом. При снижении сродства гемоглобина к О2, т.е. облегчении перехода О2 в ткани, кривая сдвигается вправо. Повышение сродства гемоглобина к О2 означает меньшее высвобождение кислорода в тканях, при этом кривая диссоциации сдвигается влево. Важным показате­лем, отражающем сдвиги кривой диссоциации оксигемоглобина, является параметр р50, т.е. такое РО2, при котором гемоглобин насыщен кислоро­дом на 50 %. В нормальных условиях у человека (при t 37 °С, рН 7,40 и РаСО2 = 40 мм рт.ст.) р50 = 27 мм рт.ст. При сдвиге кривой дис­социации вправо P50 увеличивается, а при сдвиге влево — снижается.

На сродство гемоглобина к О2 оказывают влияние большое количество метаболических факторов, к числу которых относятся рН, РСО2, темпера­тура, концентрация в эритроцитах 2,3-дифосфоглицерата (2,3-ДФГ). Сни­жение рН, повышение РСO2 и температуры снижают сродство гемоглоби­на к О2 и смещению кривой вправо. Такие метаболические условия созда­ются в работающих мышцах, и такой сдвиг кривой является физиологиче­ски выгодным, так как повышенное высвобождение О2 необходимо для активной мышечной работы. Влияние рН и РаСО2 на кривую диссоциации называется эффектом Бора. На кривую диссоциации оксигемоглобина может оказать влияние и окись углерода (СО). СО имеет сродство к гемоглобину в 240 раз выше, чем О2, и, связываясь с гемоглобином, образует карбоксигемоглобин (НbСО). При этом даже небольшие количества СО могут связать большую часть НЬ крови и значительно уменьшить содержание О2 крови. Кроме того, СО сдвигает кривую диссоциации влево, что препятствует высвобож­дению О2 в тканях и также усугубляет гипоксию.

Еще одним фактором, влияющим на сродство Нb к кислороду, является метгемоглобин — гемоглобин, содержащий железо, окисленное до Fе3+. У здорового человека общее содержание метгемоглобина не превышает 3 %, однако при приеме некоторых лекарств (например, фенацетин, сульфаниламиды, нитроглицерин) и дефиците фермента метгемоглобин-редуктазы происходит образование значительных количеств метгемоглобина. Метгемоглобинемия вызывает смещение кривой диссоциации влево, т.е препятствует высвобождению в тканях, а при повышении концентрации метгемоглобина более 60 % происходит также и уменьшение нормального Нb, что приводит к тяжелой гипоксии.

10. газообмен и транспорт диоксида углерода (СО) кровью. Особенность диффузии СО через аэрогематический барьер, коэффициент растворимости, величина концентрационного градиента. Роль карбоангидразы. Механизмы транспорта СО и их количественная хар-ка. Углекислый газ является конечным продуктом клеточного метаболизма. СО2 образуется в тканях, диффундирует в кровь и переносится кровью к легким в трех формах: растворенной в плазме, в составе бикарбоната и в виде карбаминовых соединений эритроцитов.

Количество СО2, растворимого в плазме, как и для О2, определяется за­коном Генри, однако его растворимость в 20 раз выше, поэтому количест­во растворенного СО2 довольно значительно и составляет до 5—10 % от общего количества СО2 крови.

Реакция образования бикарбоната описывается следующей формулой:

СО2 + Н2О <-> Н2СО3 <-> Н+ + НСО3-.

Первая реакция протекает медленно в плазме и быстро — в эритроцитах, что связано с содержанием в клетках фермента карбоангидразы. Вторая ре­акция — диссоциация угольной кислоты — протекает быстро, без -участия ферментов. При повышении в эритроците ионов НСО3 происходит их диффузия в кровь через клеточную мембрану, в то время как для ионов Н+ мембрана эритроцита относительно непроницаема и они остаются внутри клетки. Поэтому для обеспечения электронейтральности клетки в нее из плазмы входят ионы Сl- (так называемый хлоридный сдвиг)

Высвобождающиеся ионы Н+ связываются с гемоглобином:

Н+ + НbО2 <-> Н+ • Нb + О2.

Восстановленный гемоглобин является более слабой кислотой, чем ок-сигемоглобин. Таким образом, наличие восстановленного Нb в венозной крови способствует связыванию СО2, тогда как окисление НЬ в сосудах легких облегчает его высвобождение. Такое повышение сродства СО2 к ге­моглобину называется эффектом Холдейна. На долю бикарбоната прихо­дится до 90 % всего СО2, транспортируемого кровью.

Карбаминовые соединения образуются в результате связывания СО2 с концевыми группами аминокислот белков крови, важнейшим из которых является гемоглобин (его глобиновая часть):

Нb • NH2 + СО2 +-> Нb • NH • СООН.

В ходе этой реакции образуется карбаминогемоглобин. Реакция протека­ет быстро и не требует участия ферментов. Как и в случае с ионами Н+, вос­становленный Нb обладает большим сродством к СО2, чем оксигемоглобин. Поэтому деоксигенированный гемоглобин облегчает связывание СО2 в тка­нях, а соединение Нb с О2 способствует высвобождению СО2. В виде карбаминовых соединений содержится до 5 % общего количества СО2 крови.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.