Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физиология Экзамен.doc
Скачиваний:
93
Добавлен:
02.05.2015
Размер:
834.56 Кб
Скачать

1. Значение дыхания для организма. Биомеханика дыхательных движения. Роль инспираторных, вспомогательных и экспираторных мышц. Значение движения ребер и диафрагмы. Пневмография.

Дыхание — совокупность последовательно протекающих процессов, обеспечивающих потребление организмом О2 и выделение СО2. Дыхание включает определенную последовательность процессов; 1) внешнее дыхание, обеспечивающее вентиляцию легких; 2) обмен газов между альвеолярным воздухом и кровью; 3) транспорт газов кровью; 4) об­мен газов между кровью в капиллярах и тканевой жидкостью; 5) обмен га­зов между тканевой жидкость и клетками; 6) биологическое окисление в клетках (внутреннее дыхание). Дыхательные мышцы обеспечивают ритмичное увеличение или умень­шение объема грудной полости. Функционально дыхательные мышцы де­лят на инспираторные (основные и вспомогательные) и экспираторные. Основную инспираторную группу мышц составляют диафрагма, наружные межреберные и внутренние межхрящевые мышцы; вспомогательные мыш­цы — лестничные, грудиноключично-сосцевидные, трапецевидная, боль­шая и малая грудные мышцы. Экспираторную группу мышц составляют абдоминальные (внутренняя и наружная косые, прямая и поперечная мышцы живота) и внутренние межреберные.

Важнейшей мышцей вдоха является диафрагма — куполообразная мышца, разделяющая грудную и брюшную полости. При сокращении диафрагмы ор­ганы брюшной полости смещаются вниз и вперед и вертикальные размеры грудной полости возрастают. При этом поднимаются и расхо­дятся ребра, что приводит к увеличению поперечного размера грудной по­лости. При спокойном дыхании диафрагма является единственной актив­ной инспираторной мышцей и ее купол опускается на 1 — 1,5 см. При глу­боком форсированном дыхании увеличивается амплитуда движений диа­фрагмы (экскурсия может достигать 10 см) и активизируются наружные межреберные и вспомогательные мышцы. Из вспомогательных мышц наи­более значимыми являются лестничные и грудиноключично-сосцевидные мышцы.

Наружные межреберные мышцы соединяют соседние ребра. Их волок­на ориентированы наклонно вниз и вперед от верхнего к нижнему ребру. При сокращении этих мышц ребра поднимаются и смещаются вперед, что приводит к увеличению объема грудной полости в переднезаднем и боковом направлениях. Паралич межреберных мышц не вызывает серьез­ных расстройств дыхания, поскольку диафрагма обеспечивает вентиля­цию.

Лестничные мышцы, сокращаясь во время вдоха, поднимают 2 верхних ребра, а вместе с ними всю грудную клетку. Грудиноключично-сосцевид­ные мышцы поднимают I ребро и грудину. При спокойном дыхании они практически не задействованы, однако при увеличении легочной вентиля­ции могут интенсивно работать.

Выдох при спокойном дыхании происходит пассивно. Легкие и грудная клетка обладают упругостью, и поэтому после вдоха, когда они активно растягиваются, стремятся вернуться в прежнее положение. При физиче­ской нагрузке, когда повышено сопротивление воздухоносных путей, вы­дох становится активным.

Наиболее важными и сильными экспираторными мышцами являются абдоминальные мышцы, которые образуют переднебоковую стенку брюш­ной полости. При их сокращении повышается внутрибрюшное давление, диафрагма поднимается вверх и объем грудной полости, а следовательно и легких, уменьшается.

В активном выдохе участвуют также внутренние межреберные мышцы. При их сокращении ребра опускаются и объем грудной клетки уменьшает­ся. Кроме того, сокращение этих мышц способствует укреплению межре­берных промежутков. Пневмография – графич регистрация движения грудной клетки. Определяется ЧДД (12-25 в мин), продолж дых цикла, амплитуда дыхания.

3. Легочные объемы и емкости. Их хар-ка, величины и факторы ее определяющие. Методы определения. Для характеристики вентиляционной функции легких и ее резервов бо­льшое значение имеет величина статических и динамических объемов и емкостей легких. К статическим объемам относятся величины, которые измеряют после завершения дыхательного маневра без ограничения ско­рости (время) его выполнения. К статическим показателям относятся че­тыре первичных легочных объема: дыхательный объем (ДО-VТ), резерв­ный объем вдоха (РОвд-IRV), резервный объем выдоха (РОвыд-ERV) и остаточный объем (ОО-RV), а также и емкости: жизненная емкость легких (ЖЕЛ-VС), емкость вдоха (Евд-IС), функциональная остаточная емкость (ФОЕ-FRС) и общая емкость легких (ОЕЛ-ТLС).

При спокойном дыхании с каждым дыхательным циклом в легкие по­ступает объем воздуха, называемый дыхательным (VT). Величина VT у взрослого здорового человека весьма вариабельна; в состоянии покоя VT составляет в среднем около 0,5 л.

Максимальный объем воздуха, который дополнительно человек спосо­бен вдохнуть после спокойного вдоха, называется резервным объемом вдоха (IRV). Этот показатель для человека среднего возраста и средних ан­тропометрических данных составляет около 1,5—1,8 л.

Максимальный объем воздуха, который человек дополнительно может выдохнуть после спокойного выдоха, называется резервным объемом вы­доха (ЕRV) и составляет 1,0—1,4 л. Гравитационный фактор оказывает вы­раженное влияние на этот показатель, поэтому он выше в вертикальном положении, чем в горизонтальном.

Остаточный объем (RV) — объем воздуха, который остается в легких по­сле максимального экспираторного усилия; он составляет 1,0—1,5 л. Его объем зависит от эффективности сокращения экспираторных мышц и ме­ханических свойств легких. С возрастом RV увеличивается. RV подразделя­ют на коллапсный (покидает легкое при полном двустороннем пневмото­раксе) и минимальный (остается в легочной ткани после пневмоторакса).

Жизненная емкость легких (VС) — это объем воздуха, который можно выдохнуть при максимальном экспираторном усилии после максимально­го вдоха. VС включает в себя VT, IRV и ЕRV. У мужчин среднего возраста VС варьирует в пределах 3,5—5 л, у женщин — 3—4 л.

Емкость вдоха (IС) — это сумма VT и IRV. У человека IС составляет 2,0—2,3 л и не зависит от положения тела.

Функциональная остаточная емкость (FRC) — объем воздуха в легких после спокойного выдоха — составляет около 2,5 л. FRC называют также конечным экспираторным объемом. При достижении легкими FRC их внутренняя эластическая отдача уравновешивается наружной эластиче­ской отдачей грудной клетки, создавая отрицательное плевральное давле­ние. У здоровых взрослых лиц это происходит на уровне примерно 50 %. TLC при давлении в плевральной полости — 5 см вод. ст. FRC является суммой ERV и RV. На величину FRC существенно влияет уровень физической активности человека и положение тела в момент измерения. FRC в горизонтальном положении тела меньше, чем в положении сидя или стоя из-за высокого стояния купола диафрагмы. FRC может уменьшаться, если тело находится под водой. Общая емкость легких (TLC) – объем воздуха, находящийся в легких по завершении максимального вдоха. TLC представляет сумму VC и RV или FRC и IC.

Динамические величины характеризуют объемную скорость воздушного потока. Их определяют с учетом времени, затраченного на выполнение дыхательного маневра. К динамическим показателям относятся: объем форсированного выдоха за первую секунду (ОФВ1 — FEV1); форсирован­ная жизненная емкость (ФЖЕЛ — FVC); пиковая объемная (РЕV) ско­рость выдоха (ПОСвыд. — PEV) и др. Объемы и емкости легких здорового человека определяет ряд факторов: 1) рост, масса тела, возраст, расовая принадлежность, конституциональные особенности человека; 2) эластиче­ские свойства легочной ткани и дыхательных путей; 3) сократительные ха­рактеристики инспираторных и экспираторных мышц.

Для определения легочных объемов и емкостей используются методы спирометрии, спирографии, пневмотахометрии и бодиплетизмографии. Для сопоставимости результатов измерений легочных объемов и емкостей полученные данные должны соотноситься со стандартными условиями: температуры тела 37 °С, атмосферного давления 101 кПа (760 мм рт.ст.), относительной влажности 100 %. Эти стандартные условия обозначают аб­бревиатурой ВТРS (от англ. Body temperature, pressure, saturated).

4. Альвеолярная вентиляция. Хаар-ка анатомического и альвеолярного мертвого пространства, их влияние на эффективность альвеолярной вентиляции. Газовая смесь, поступившая в легкие при вдохе, распределяется на две неравные по объему и функциональному значению части. Одна из них не принимает участия в газообмене, так как заполняет воздухонос­ные пути (анатомическое мертвое пространство — Vd) и неперфузируемые кровью альвеолы (альвеолярное мертвое пространство). Сумма ана­томического и альвеолярного мертвых пространств называется физиологи­ческим мертвым пространством. У взрослого человека в положении стоя объем мертвого пространства (Vd) составляет 150 мл воздуха, находяще­гося в основном в воздухоносных путях. Эта часть дыхательного объема участвует в вентиляции дыхательных путей и неперфузируемых альвеол. Отношение Vd к VT составляет 0,33. Другая часть дыхательного объема поступает в респираторный отдел, представленный альвеолярными протоками, альвеолярными мешочками и собственно альвеолами, где принимает участие в газообмене. Эта часть дыхательного объема называется альвеолярным объемом. Она обеспечивает вентиляцию альвеолярного пространства. Газообмен наиболее эффективен, если альвеолярная вентиляция и ка­пиллярная перфузия распределены равномерно по отношению друг к дру­гу. В норме вентиляция обычно преимущественно осуществляется в верх­них отделах легких, в то время как перфузия — преимущественно в ниж­них. Вентиляционно-перфузионное соотношение становится более равно­мерным при нагрузке. Наиболее важными особенностями альвеолярной вентиляции являются:

• интенсивность обновления газового состава, определяемая соотношени­ем альвеолярного объема и альвеолярной вентиляции;

• изменения альвеолярного объема, которые могут быть связаны либо с увеличением или уменьшением размера вентилируемых альвеол, либо с изменением количества альвеол, вовлеченных в вентиляцию;

• различия внутрилегочных характеристик сопротивления и эластичности, приводящие к асинхронности альвеолярной вентиляции;

• поток газов в альвеолу или из нее определяется механическими характе­ристиками легких и дыхательных путей, а также силами (или давлени­ем), воздействующими на них. Механические характеристики обуслов­лены главным образом сопротивлением дыхательных путей потоку воз­духа и эластическими свойствами легочной паренхимы. Неравномерность альвеолярной вентиляции обусловлена и гравитационным фактором – разницей транспульмонального давления в верхних и нижних отделах грудной клетки. В вертикальном положении в нижних отделах это давление выше примерно на 0,8кПа.

5. Газовый состав атмосферного, альвеолярного и выдыхаемого воздуха. МОД. МВЛ. Состав сухого и чистого атмосферного воздуха везде одинаков. В лесу и в поле, на море и на суше основные газы входят в него в одних и тех же объемных соотношениях: азот — 78%, кислород — 21%, аргон — около 1%. На долю всех прочих составных частей сухого и чистого атмосферного воздуха — углекислого газа, неона, гелия, криптона, водорода, озона, радона и других — приходится в общей сложности не более 0,04%. Однако в естественных условиях воздух, которым мы дышим, не бывает абсолютно сухим. В нем всегда имеется водяной пар, содержание которого меняется в очень широких пределах — от самых ничтожных количеств до 3—4% по объему.    Состав (объёмные доли,  F ) всего объёма выдыхаемой газовой смеси в среднем следующий: кислород  F(O2) ~16%,  двуокись углерода  F(CO2) ~4,3%,  остальное приходится на азот и очень небольшое количество инертных газов, не участвующих в газообмене. Соответственно, парциальные давления,  P:  Р(O2) ~115; мм рт ст,   Р(CO2) ~30,6; мм рт ст. В альвеолярной газовой смеси объёмная доля кислорода  FaO2 ~ 0,14 мл  O2  на 1 мл смеси, то есть ~ 14 об%, (мл / дл), а объёмная доля двуокиси углерода  FaCO2 ~ 0,056 мл  CO2  на 1 мл смеси, то есть ~ 5,6 об%, (мл / дл). Оставшуюся объёмную долю смеси занимает азот и ничтожное количество других инертных редких газов.      В конце выдоха состав выдыхаемой смеси газов близок к составу альвеолярной смеси газов. Нередко эти последние порции выдыхаемой газовой смеси анализируют как альвеолярную смесь газов. Количественным показателем вентиляции легких является минутный объем дыхания (МОД — VE) величина, характеризующая общее количест­во воздуха, которое проходит через легкие в течение 1 мин. Ее можно определить как произведение частоты дыхания (R) на дыхательный объ­ем (VT) : VЕ = VТ • R. Величина минутного объема дыхания определяется метаболическими потребностями организма и эффективностью газообме­на. Необходимая вентиляция достигается различными комбинациями ча­стоты дыхания и дыхательного объема. У одних людей прирост минутной вентиляции осуществляется учащением, у других — углублением дыха­ния.

У взрослого человека в условиях покоя величина МОД в среднем со­ставляет 8 л.

Максимальная вентиляция легких (МВЛ) — объем воздуха, который проходит через легкие за 1 мин при выполнении максимальных по частоте и глубине дыхательных движений. Эта величина чаще всего имеет теоре­тическое значение, так как невозможно поддерживать максимально воз­можный уровень вентиляции в течение 1 мин даже при максимальной фи­зической нагрузке из-за нарастающей гипокапнии. Поэтому для его кос­венной оценки используют показатель максимальной произвольной вентиля­ции легких. Он измеряется при выполнении стандартного 12-секундного теста с максимальными по амплитуде дыхательными движениями, обеспе­чивающими величину дыхательного объема (VТ) до 2—4 л, и с частотой дыхания до 60 в 1 мин.

МВЛ в значительной степени зависит от величины ЖЕЛ (VС). У здоро­вого человека среднего возраста она составляет 70—100 л /мин"1; у спортс­мена доходит до 120—150 л / мин.

6

7

8

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.