Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Социально-экономическая статистика редакция .doc
Скачиваний:
335
Добавлен:
01.05.2015
Размер:
3.79 Mб
Скачать

Начисление по схеме простых процентов

Смысл простой схемы начисления процентов в том, что проценты начисляются все время на первоначальную сумму вклада независимо от срока вклада. В этом случае наращенная сумма находится по формуле

,

или

, т.е.

Пусть процентная ставка меняется во времени, т. е. в течение срока проценты начисляются по ставке, затем в течение срока– по ставкеи т. д. Тогда наращенная сумма находится по формуле

Пусть сумма вклада меняется во времени, т. е. в течение срока вклада на счет поступают (снимаются) суммы в размере ,и т. д. Тогда наращенная сумма находится по формуле

,

где – это срок с момента поступления (снятия) суммыдо момента окончания вклада,– срок с момента поступления (снятия) суммыдо момента окончания вклада.

На практике для вычисления процентов часто определяют процентное число и процентный ключ (дивизор). Если ставку i измерять в процентах, то

I =

Процентным числом назовем величину Р t / 100,

а процентным ключом – К / i.

С учетом последних двух формул сумма процентных денег может быть рассчитана так:

I =.

Пусть происходит реинвестирование по простой ставке, т. е. наращенная сумма к концу срока становится базой для расчета процентов на срок, сумма, наращенная к концу этого срока, становится базой для расчета процентов на сроки т. д. Тогда наращенная сумма к концу всего срока вклада находится по формуле:

Начисление по схеме сложных процентов

Смысл сложной схемы начисления процентов в том, что процентные деньги, начисленные после периода начисления (обычно, года), присоединяются к первоначальной сумме. Полученная сумма является базой для начисления процентов в следующем периоде. Таким образом, база для начисления сложных процентов, в отличие от простых процентов, увеличивается с каждым периодом начисления.

Если период начисления Т – целое число лет, то наращенная сумма находится по формуле:

Если срок вклада Т не является целым числом, то наращенная сумма может быть найдена по схемам:

– обыкновенной:

– смешанной: Т представляется в виде суммы целого числа лет и оставшейся нецелой части года Т= Тцел+ Тдроб, и наращенная сумма равна

Например, сумма в размере 100 тыс. руб. помещена в банк сроком на 27 месяцев под 12% годовых.

Наращенная сумма, рассчитанная по обыкновенной схеме, составляет:

=129,045 тыс. руб.

Поскольку 27 месяцев – это 2 года плюс 3 месяца, то Тцел=2, Тдроб=3/12=1/4=0,25, то наращенная сумма, рассчитанная по смешанной схеме, равна:

=129,203 тыс. руб.

Пусть процентная ставка меняется во времени, т. е. в течение срока проценты начисляются по ставке, затем в течение срока– по ставкеи т. д. Тогда наращенная сумма находится по формуле

Номинальная и эффективная ставка процента

Номинальная годовая ставка i – это исходная годовая ставка, которую назначает банк для начисления процентов. Номинальная ставка может начисляться один раз в год. Тогда наращенная сумма равна

Если же номинальная ставка начисляется несколько раз в год, то наращенная сумма находится по формуле

где – срок вклада (в годах),– число начислений процентов в год.

Например, если первоначальный размер вклада равен 100 тыс. руб., а номинальная ставка 12% годовых начисляется раз в год, то наращенная сумма через 2 года составит:

тыс. руб.,

а при ежеквартальном начислении процентов наращенная сумма равна:

=126,677 тыс. руб.

Эффективная ставка – это ставка, измеряющая реальный доход, получаемый при -кратном начислении процентов в год. Таким образом, выполняется равенство

и эффективная ставка может быть найдена по формуле

.

Пусть сумма вклада меняется во времени, т. е. на счет поступают суммы в размере (первоначальный взнос),и т. д. Тогда наращенная сумма находится по формуле

,

где – это срок с момента поступления (снятия) суммыдо момента окончания вклада,– срок с момента поступления (снятия) суммыдо момента окончания вклада.

Рассмотрим частный случай – начисление сложных процентов при регулярных взносах. Такое поступление денежных средств называется финансовой рентой с постоянными членами, а наращенная сумма всех взносов – наращенной суммой ренты.

Пусть на счет регулярно вносятся одинаковые суммы через одинаковые периоды времени (раз в год).

Введем обозначения:

Rразмер ежегодного платежа;

nчисло лет, в течение которых поступают взносы.

Если выплаты производятся в конце года (рента постнумерандо), то наращенная сумма через n лет определяется по формуле

.

Если выплаты производятся в начале года (рента пренумерандо), то наращенная сумма через n лет определяется по формуле

.