Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
генетика,Петухов / петухов.doc
Скачиваний:
126
Добавлен:
26.04.2015
Размер:
14.33 Mб
Скачать

T t t гены

АНТИГЕНЫ А,


'ft


ИММУНОЛОГИЧЕСКАЯ НЕСОВМЕСТИМОСТЬ "МАТЬ-ПЛОД"МАТЬ АНТИГЕНЫ ПЛОД НОВОРОЖДЕННЫЙ

Т||ТИП АНТИТЕЛА (АНТИ-А,)

Рис. 45. Генетические причины взаимосвязи групп крови, биохимических поли­морфных систем с резистентностью, восприимчивостью к болезням и продуктив­ностью

  1. плейотропном действии генов, т. е. когда гены,обусловливающие группы крови или биохимические полиморф­ные системы (маркерные гены), прямо или косвенно влияют нарезистентность к болезням и продуктивность;

  2. сцеплении между локусами групп крови или биохими­ческих полиморфных систем и локусами, влияющими на резис­тентность или продуктивность;

  3. гетерозисе, когда гетерозиготность по группам кровиили биохимическим полиморфным системам повышает резис­тентность к болезням или продуктивность;

  4. иммунологической несовместимости ма­тери и плода, при которой вследствие разных генотипов у материи плода по группам крови возникают, например, гемолитическаяболезнь у жеребят, поросят, эритробластоз у человека.

219

Н-группа крови используется для определения чувствитель­ности свиней к синдрому стресса (PSS), который характеризуется внезапной смертью животных, вызванной транспортировкой, высокой температурой и другими стрессорами. К PSS чувстви­тельны гомозиготные НаНа особи. Локусы Н-системы группы крови и PHI (фосфогексоизомеразы) связаны с чувствительнос­тью к синдрому злокачественной гипертермии (MHS), который вызывается лекарственными веществами, галотаном.

Аллель В21 группы крови у птиц коррелирует с повышенной резистентностью к болезни Марека. Цыплята генотипа В22 более резистентны к вирусу саркомы Рауса, чем особи с геноти­пом В55.

Гемолитическая болезнь новорожденных. В 1940 г. Левин с сотрудниками открыли гемолитическую болезнь новорожденных у человека, обусловленную несовместимостью генотипов матери и плода. В браках резус-положительных (Rh+) мужчин с резус-отрицательными (Rh~) женщинами могут рождаться резус-поло-жителв&ые дети. На 2—3-м месяце беременности кровь резус-по­ложительного плода, поступая в организм матери, вызывает об­разование у нее антител против резус-антигена. Антитела, проникая через плаценту в организм плода, вызывают эритроб-ластоз (разрушение эритроцитов).

ПЛАЦЕНТА

ПЛОД


ПЛОДОВЫЕ ОБОЛОЧКИ С КРО­ВЕНОСНЫМИ СОСУДАМИ


АНТИТЕЛА

ЭРИТРОЦИТЫ


Во многом сходное заболевание встречается у поросят, жере­бят и телят. Но в отличие от человека плацента указанных видов непроницаема для антител и они накапливаются в молозиве (рис. 46). Только после сосания матери в первые 24—48 ч у

РЕАКЦИЯ АНТИГЕН-ЭРИТРОЦИТ - АНТИТЕЛО

молозиво с

АНТИТЕЛАМИ

Рис. 46. Развитие гемолитической болезни у жеребят:

А — эритроциты плода попадают через плаценту и кровоток матери; Б — образовавшиеся в крови антитела поступают с молозивом в организм жеребенка, вызывая разрушение эритро­цитов

220

новорожденного наблюдаются патологические изменения в виде желтушности склеры глаз, слабости, учащенного дыхания, сни­жения числа эритроцитов. Молодняк в таких случаях погибает в течение нескольких дней.

У лошадей изогемолиз новорожденных наиболее часто возни­кает, когда жеребята имеют Ai- и Q-антигены соответствующих систем групп крови, наследуемых от отца и отсутствующих у ма­терей. Иногда иммунологический конфликт наступает при насле­довании потомков от отца антигенов R и S. Своевременное неза­долго до выжеребки выявление антител у матерей и поение жере­бенка первые два дня жизни молозивом другой кобылы позволяют избежать заболевания. В это время молозиво матери сдаивают.

Частота изогемолиза новорожденных у жеребят английской чистокровной породы составляет около 1 %. Полагают, что эта болезнь в основном встречается у лошадей арабской породы и других, от нее происходящих.

Естественный изогемолиз новорожденных у крупного рогато­го скота встречается редко, поэтому до 1970 г. не было зареги­стрировано ни одного случая заболевания. В настоящее время имеется много данных о том, что в стадах, вакцинированных против анаплазмоза, частота изогемолиза (N1) достигает 3—20 %. По данным Керр (1973), в одном стаде от 24 коров, за год до отела вакцинированных против анаплазмоза, было 66,6 % пора­женных N1 телят, из которых 18 % погибло. Полагают, что в большинстве случаев изогемолиз новорожденных у крупного ро­гатого скота — следствие вакцинации против анаплазмоза.

У свиней, как и у лошадей, основная причина N1 — несо­вместимость по группам крови матери и плода.

Связь групп крови с продуктивностью. Селекционеры давно мечтают найти маркеры для прогнозирования продуктивности в раннем возрасте. Удобно было бы использовать в качестве гене­тических маркеров группы крови и биохимические полиморфные системы. Много сил потрачено на изучение этой проблемы, но и сегодня она далеко не решена.

У шведского черно-пестрого и красно-пестрого скота выявле­на положительная корреляция аллеля BO1Y2D' системы В с со­держанием жира в молоке. Л. К. Эрнст и др. (1973) показали, что аллель 12 В-системы связан с жирномолочностью коров ряда линий черно-пестрой и ярославской пород. По данным В. Ф. Красоты, коровы костромской породы с некоторыми алле­лями (О, Р) В-системы отличались более высокой молочностью. Аллели В1 и В3 у кур коррелируют с высокой яйценоскостью.

Повышение продуктивности может быть связано и с гетерози-готностью по группам крови. Так, увеличение гетерозиготности по В-локусу у кур привело к повышению вылупляемости цып­лят, интенсивности роста и яйценоскости.

Одна из гипотез, объясняющих гетерозис (превосходство гиб-

221

Продолжение

Число аллелей

Символ локуса

ридов над родительскими формами по степени развития того или иного признака), — гипотеза сверхдоминантнрсти. Она основы­вается на утверждении, что в гетерозиготе 'гены более полно проявляются, чем в гомозиготе. В. Н. Тихонов установил, что гетерозиготность по некоторым антигенам групп крови ведет к гетерозису. При спаривании гомозиготных особей типа Gbb x х Gbb в среднем от свиноматки получено 10,67 поросенка, при спаривании гетерозиготных животных типа Gab x Gab — 11,47, а при спаривании Gaa x Gbb — 12,34 поросенка (гетерозис по плодовитости). В последнем случае масса гетерозиготных поро­сят в 2-месячном возрасте выше на 11 %.

БИОХИМИЧЕСКИЙ ПОЛИМОРФИЗМ

В течение эволюции в результате мутаций изменяются гены, поэтому в популяции они встречаются не в одной, а в двух и более формах (множественные аллели). Полиморфизм — одновременное присутствие двух или более генетических форм одного вида в таком численном отношении, что их нельзя отнести к повторным мутациям. Поэтому термин «генетический (биохимический) полиморфизм» применяется в тех случаях, когда локус хромосомы в популяции имеет два и более аллелей с частотой больше 0,01. Ген, представленный более чем одним аллелем, называют поли­морфным геном. Доля полиморфных локусов точно неизвестна, но полагают, что в популяциях многих видов она достигает 25—50 %. Так, у человека из 50 тыс. или более структурных локусов по крайней мере 30 % могут быть полиморфными.

Основными методами изучения полиморфизма белков и фер­ментов являются электрофорез в крахмальном или акриламид-ном геле и иммуноэлектрофорез. Белки (в том числе ферменты) находятся в растворе в виде частиц, несущих определенный электрический заряд, которые под действием электрического тока перемещаются к катоду или аноду.

Сейчас у сельскохозяйственных животных изучено более 150 полиморфных локусов белков (в том числе ферментов) крови, молока, тканей (табл. 34), расположенных в аутосомах. Установ­лено сцепление трех локусов казеина молока ocSi-Cn, P-Cn и к-Cn (каппа-казеин).